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ABSTRACT 

Aerial image acquisition systems are producing more data than can be analyzed 
by human experts. Most of the images produced by remote sensing satellites, including 
military ones, never get seen or inspected. In this work, automated detection and 
recognition of buildings in aerial photos is explored. Connectivity analysis is performed 
on graphs derived from line segment representations of the original images, obtained with 
the use of the Radon Transform. The model is experimentally validated using 2-meter 

panchromatic aerial photographs from the National Aerial Photography Program (NAPP), 
which provide a marginally adequate resolution for the recognition of small buildings. 



DISCLAIMER 

The algorithms and computer programs developed in this research were not 
exercised for all possible cases of interest. While every effort has been made, within the 
time available, to ensure that the programs are free of computational and logic errors, 

they cannot be considered validated. Any application of these programs without 
additional verification is at the risk of the user. 
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I.      INTRODUCTION 

A.       AERIAL PHOTOGRAPHY 

Since the advent of photography last century, it has been used as a descriptive 

resource for a large variety of urban constructions and other human-made structures. 
Since the nineteenth century, aerial photographs - obtained from the top of nearby hills 
or balloons, from kites or airplanes, whatever the technology could offer as an elevated 
platform for a camera - were always highly regarded as a descriptive tool [Ref. 1]. 

More recently, artificial satellites provide the ultimate platform for a camera: 
Permanently in the skies, from a high latitude orbit, a satellite is able to periodically 
cover virtually any point of the globe every few days. From a military perspective, a 
camera hundreds of thousands kilometers above ground is much more convenient, safer 
and discreet than a manned flight within reach of enemy reaction. Also, orthorectified 
images can be easily produced from the raw pictures collected, since orbits, position in 
orbit and attitude are controlled and precisely known when a picture is captured. That 
means that it is possible to measure the geometry of the area photographed to a high 

degree of accuracy. 

Modern remote sensing satellites are equipped with high-definition electronic 
cameras and high-bandwidth communication ports that enable ground control stations to 
receive images in digital format and instantaneously relay them to designated locations 
continuously. This opens new fronts for the analysis of aerial photographs: Beyond 
quality and availability, the latency in the capture process is now minimal. And by being 
in digital format, the information can be easily stored, retrieved and made available to a 

computer program. 

This is appealing because analysis of an aerial photo by a human expert is slow, 
prone to error and often infeasible due to lack of sufficient manpower. The automation of 
photographic analysis is one of the main research topics in remote sensing today. Most of 
the results concern high-level categorization of terrain and the production of digital maps. 
The military uses digital terrain modeling and general electronic cartography for 
Command, Control, Communications, Computers and Intelligence (C4I) systems. 



Semantic contextual analysis of photographs remains still an area of open 

investigation, since the only effective tools for it today are well-trained human experts. 

The experts perform a set of actions: (i) Pixels of the image are grouped into entities; (ii) 

entities are recognized; (iii) relationships are established; and (iv) conclusions are drawn 

from the overall scenario. Semantic interpretation yields not data and statistical features 

but conclusions and facts. 

B.       MILITARY APPLICATIONS OF AERIAL PHOTOGRAPHS ANALYSIS 

Typical military uses of aerial photography include: 

Tactical area surveillance, monitoring over a geographic area for detecting and 

locating targets that are predictable in nature (for instance, ships, tanks, aircrafts, and 

personnel). Target activity can also be tracked along time. 

Strategic wide area surveillance, monitoring over a large geographic area for 

interesting or unexpected or not restrictively defined events that might have long-term 

military relevance. Many events in this class either take time, like building construction 

and supply relocation, or have long lasting detectable consequences, like natural 

catastrophes. Such monitoring was important recently for NATO operations in Kosovo 
[Ref. 2]. 

Target analysis or tactical survey, analysis performed on a limited amount of 

information concerning some specific area or object and its surroundings, for force 

evaluation or mission planning. 

Damage assessment survey, a special type of tactical survey performed after a 

strike or attack, estimating damage produced to targets. A previous tactical survey should 

be available for comparison. Accurate damage assessment is important since information 

and impressions collected during the battle may be misleading or false, since often the 

damage is less intense than is believed. 

Special-forces mission-planning survey, analysis to support the deployment of 

special forces. These are missions where direct contact or exposure to the enemy is 

implied and the area surveyed is usually enemy-controlled and may not be easily 



accessed by means other than photographic. Activities in these missions may include 

guerilla warfare, evasion and escape, subversion, sabotage, and other operations of 

requiring low visibility or a covert nature. Photointerpretation requirements are 

demanding with respect to accuracy, level of detail, and delivery timing. 

The analysis associated with these tasks is similar in nature. The challenge to the 

expert is the time between when images are acquired and when conclusions must be 

derived (especially in the last two tasks). Analysis can be complex and an intense 

discussion between experts and mission command often occurs, making it desirable that 

the experts be locally available. 

C.       VISION: THE NEED FOR AUTOMATED ANALYSIS 

Well less than half of the pictures taken by our satellites ever 
get looked at by human eyes or by any sort of mechanized device or 
computerized device ...and there is no plan at the present to build up 
an image analytic capability - John Mills, staff director for the U.S. 
House Intelligence Committee (declaration published on March 26, 1999). 
[Ref. 3]. 

The above quotation suggests a gap between the investment of billions of dollars 

by the United States on hardware for acquiring high-quality imagery and the necessary 

analytical ability. Was this a mistake? No, because easier problems should be solved first 

in a technical area. But the current situation urges for the development of automated 

analysis techniques and tools for military and intelligence needs because: 

(i) The analytical manpower available today is unable to use all the costly large 

data sets generated by the latest generation of collecting platforms, and data collection 

rates continue to increase. 

(ii) Response-time requirements for analysis are continually becoming shorter for 

military applications, and such applications must always be judged on a competitive 

basis. 



(iii) Automated analytic systems would mostly compensate the absence of an 

expert on-site, giving a chance to interactively question a hypothesis. If experts are 

available on-site, automated tools could still enhance their productivity. 

D.       THE CONTRIBUTION OF THIS WORK 

Analysis of aerial photography by a hierarchical approach much like that of 

experts requires the following actions: 

(i) Detect man-made structures in aerial photos; 

(ii) Recognize these structures; 

(iii) Establish relationships between these structures; 

(iv) Infer useful assertions based on the relationships found; 

(v) Answer user questions regarding the image. 

This work investigates the use of computer vision techniques for the task of aerial 

photography analysis, focussing on the study and validation of some concepts in (i) and 
(ii) above. 

The investigation was concentrated on the recognition of buildings, among the 

most important features militarily. Most of the existing techniques require clear, high- 

definition images. We chose to work with lower-definition images, hoping that robust 

algorithms would later prove themselves useful for extracting more detailed information 
within entities. 

The algorithms developed were tested and evaluated using 2-meter panchromatic 

images from commercial sources. This is about the lower limit of resolution for human 

experts to correctly identify buildings. Benchmarking under these conditions gives a 

more realistic comparison of the algorithms qualities to the human skills. Results 

obtained indicate promising techniques that may be applied in future automated analysis 
systems. 



Chapters II and IE provide the reader with essential background in aerial 
photography and computer vision methods. Our program for photography analysis and 

building recognition is detailed in Chapter IV. Results obtained from the experimentation 
are summarized in Chapter V. Chapter VI contains concluding remarks about the 

investigation conducted. 
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II.    AERIAL PHOTOGRAPHY 

Though aerial observation has military value, its also has value to city planning, 

urban development monitoring, map building, legal disputes, and other civilian activities 

[Ref. 4]. Some companies in the business of aerial photography have existed for more 

than fifty years [Ref. 5]. Currently there is a large demand for aerial photographs, and the 

projected market for the next decade is billions of dollars. 

Aerial photography can have many attributes. Pictures taken of the same location 

may substantially differ due to incidental reasons, like current illumination and weather. 

However some other more conspicuous structural reasons will exist as a consequence of 

the different processes and camera parameters being used. In a first simplifying approach, 

the quality of an image will depend on spectral information, camera attitude and 

resolution, and the elevating platform. 

A.       SPECTRAL INFORMATION 

Images can be multispectral, if the energy of different spectral bands is registered 

separately, or panchromatic, if only one data value is registered per pixel. Commonly 

multispectral components are mapped to the basic color channels (red, green and blue). 

If, however, a single one-dimensional value is captured per pixel, representing the total 

energy along the spectrum, the data set can be visualized by the gray tones. The selection 

of band sensitivity is fundamental, for the phenomena being photographed may be better 

visible in certain wavelengths. The lower the wavelength, the higher the potential 

resolution. Seeing through atmospheric haze, however, is facilitated at infrared 

wavelengths due to the light scattering of air and water at visible-light wavelengths. But 

the highest-resolution images are obtained by merging the information of multiple 

spectral bands. This is also why pattern analysis based on apparently less informative 

gray tones images can still be worthwhile, what we study in this work. 



B.       CAMERA ATTITUDE 

Aerial photographs can be taken from different angles with respect to the earth 
surface. Planimetrie errors are introduced proportional to the cosine of the deviation 
angle from directly above. Images taken up to 15° from straight down will produce less 
than 3.5% relative error in measurements of lengths and less than 2° error in 
measurements of right angles, as shown in Table 1. 

S, Deviation angle 

from straight above 

Relative length error 

due to parallax effect 

Max angular error 

for right angles 

5° -0.38 % to 0 ±0.22° 

10° -1.5% to 0 ±0.88° 

15° -3.4% to 0 ±2.0° 

20° -6.0% to 0 ±3.6° 
Maximum distortions ii l aerial photos caused b y deviation from straig 

not considering the curvature of the Earth. 

C.        ORTHORECTIFICATION 

Angle preservation and local planimetric fidelity can be obtained in every point of 
the image if a transformation called orthorectification is applied to it. This distorts 
locations in an aerial photo based on camera and viewpoint parameters. Of the images 
used in this work, those from the National Aerial Photography Program are not 
orthorectified, while those from the SPIN-2 imagery are. But the NAPP images were not 
a problem because the deviation angle is kept less than 4 degrees, insignificant to the 
results. 

D. ELEVATING PLATFORM 

Nowadays, the platform is an airplane or artificial satellite. The same camera on 
board a lower altitude aircraft (500m to 20km typical altitude) will give much higher- 
resolution pictures than on a satellite (800 km typical orbit height). But satellites are often 
preferred, because they offer a worldwide, safe, and concealed coverage, invaluable in 
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military operations. Their positioning and attitude control are not subject to wind and 

other mechanical disturbances that may affect aircraft. 

E. MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS 

Example of these are buildings, roads, harbors, and runaways. Buildings are 
usually the most relevant man-made structures in aerial photographs. Their detection is 
valuable because most of strategic human activity occurs in, or in association with, a 
building of some sort. Also, as they do not move, they serve as good references for the 

relative position of other type of objects. Experts detect their presence based on the 

straight edges and right angles of their contours, often accompanied by contrast to the 

background. 

F. LIMITATIONS INDUCED BY RESOLUTION 

1.        Spatial Resolution 

An object can be detected by an imaging system provided it radiates enough 
luminance in the direction of the camera. So resolution cannot be defined as the 
minimum size that an object must have to be detected. Spatial resolution of an image, 
expressed in meters, is defined as the minimum distance between two individually 
detectable point objects at which they still can be distinguished. The sample definition of 
an image, the distance in meters between pixels, should not be confused with the spatial 
resolution. To preserve information of the image, the sample definition employed in its 
digitization should be smaller than the resolution. However, increasing the sample 
definition much beyond that will not increase the intrinsic image definition. 

Detecting an object will not guarantee its recognition. The characteristic size, 
luminance and contrast of buildings in aerial images makes them typically detectable at 
10m resolution. For an expert to assert that something is a building (recognition) requires 
a resolution about two times better (5m). For the classification of buildings, the resolution 

should be better than 2.5m. [Ref. 6]. 



2.        Radiometrie Resolution 

Radiometrie resolution is the number of quantization levels for the luminance of 

each pixel. It is commonly expressed in bits. Although the dynamic range of human eye 

sensitivity is about 109 [Ref. 7], the maximum number of gray levels that can be 

perceived is around 30 to 60 (roughly 6 bits). Improving the radiometric resolution of a 

digital panchromatic image further than that will not affect its analysis by human experts. 

Nonetheless, it helps to have raw images digitized at higher resolutions so that the 

original levels can be mapped into a good 6-bit presentation range. Typical resolution of 

commercial imagery is 8 bits. 

G.       HIGH RESOLUTION COMMERCIAL IMAGERY USED IN THIS WORK 

New commercial high-resolution imagery satellites such as the IKONOS, just 

launched, are predicted to be operational within the next few months, delivering 1-meter 

resolution panchromatic and 4-meter multi-spectral data [Ref. 8]. Meanwhile, high- 

resolution imagery comes from either airborne photography or formerly classified 2- 

meter satellite imagery from the seventies and eighties which are being released to public 

under commercial agreements. 

The aerial photographs used in this work were panchromatic images from two 

sources: The National Aerial Photography Program (NAPP) of the U.S. Geological 

Survey (USGS) and the SPIN-2 from Sovinforsputnik consortium. 

The NAPP aerial photographs are taken on roughly a 6-year cycle, covering the 

entire continental U.S. They are shot with a camera with a 6-inch (152mm) focal length 

lens and from airplanes flying at 20,000 feet (6 km). Camera tilt angle is controlled and 

guaranteed less than 4°. Film-negative size is 9 by 9-inch, yielding photos of areas a bit 

more than 5 miles on a side. The camera optics and film have spatial resolution sufficient 

to resolve objects 1 to 2 meters in size. Digital images were produced scanning photos 

1:1 from the negative films at 8-bit, 600 dots per inch, a sample definition of about 1.7 

meters per pixel, to preserve information. 

10 



The SPIN-2 imagery comes from the former Soviet Kosmos Program, now 
available from the association of companies Sovinforsputnik (Russia), Aerial Images Inc. 
and Microsoft [Ref. 9]. The images were taken from a 1000mm focal length KVR1000 
camera on satellites orbiting at 220 km, providing 2-meter spatial resolution. The images 
are digitized and distributed orthorectified and geo-referenced to precise accuracy, of 8 

bits and 1.56 meter per pixel. [Ref. 10]. 

11 
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III.   COMPUTER VISION METHODS 

A.       OVERVIEW 

Computer-vision methods try to recognize objects and infer facts from digital 

images. Produced by either direct digital capture or by scanning photographic film, the 
images can then be represented by bidimensional arrays of pixels, each pixel containing a 

number that describes a luminance value. The images are usually projections of the 

tridimensional world, from the perspective of the camera. 

Computer-vision models and algorithms are frequently based on presumed 
characteristics of the human vision. One of them is the hierarchical organization. This 
means that recognition of complex shapes is obtained by first recognizing elementary 
patterns, then recognizing more complex patterns based on their positional relationships. 

Facts 

* 

Knowledge Recognition 

\ k / 
Template Matching 

1 f     / 1 
Feature Extraction 

/ 
Image Processing 

Image 

Figure 1: A hierarchical model for computer vision: from image data to facts. 
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B.       IMAGE PROCESSING 

Image enhancement, edge detection, and thresholding are commonly applied on 
digital images as a first step in extracting information. Linear and non-linear filtering are 

extensively used in these steps. An often-used technique is the neighborhood-based 
processing. Each pixel P(i, j) of the image has a set of neighbor pixels called structuring 

element or neighborhood, given by a selection function AI. A new array Q is created 

where Q(i, j) is assigned to i(N (P(i, j))) for every i and j, for some mapping function f, 
usually one easily computable. 

The filter, given by the composite function i ° N is then an operator over the 

image space, returning a new image from the original one. This allows the cascading of 
filters until the information of interest is emphasized. 

Original Image Filtered Image 

j 

1 ,   ^~ 
'—: r 1 

Neighb orhooc 

J 
1 of P(i, j) 

Figure 2: Image processing based on neighborhood mappings. 

C.       FEATURE EXTRACTION 

Features are geometric patterns in images. The most important and basic of them 
is the line segment, because its occurrence in aerial photographs is often associated with 
human-made structures. Interesting higher-complexity features, like right angles, parallel 
line segments, and rectangles can be defined with straight-line segments. 
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Parametric transforms are standard methods of accomplishing feature extraction. 

They map an image from a primary domain into a transformed space where it is easier to 

identify geometric features. The transformed space, which is also called a parametric 

space or transformed domain, is often a bidimensional space that can be displayed as an 

image as well. Two commonly used parametric transforms for the detection of straight 

lines are the Hough and the Radon Transforms. We chose the second due to its fast 

discrete implementation with the Fast Fourier Transform. 

D.       THE RADON TRANSFORM 

The Radon Transform [Ref. 11] works similarly to the easier-to-understand 

Hough Transform. It was devised in 1917 and it remained almost unnoticed until it 

became largely used in tomographic reconstruction. It was originally defined for 

continuous functions. Its main properties are: 

(i) It maps Cartesian into polar pixel coordinates and replaces the complex search 

for aligned topologically connected clusters of pixels by the search for relative maxima in 

the transformed image. 

(ii) Each pixel of the transformed domain will be associated with a unique line in 

the original image. The larger the transformed image, the finer will be the granularity in 

the representation of lines in the original image. 

(iii) Distinguishing collinear line segments in the Radon Transform is impossible 

since their mappings coincide. Hence extraction of line segments requires additional 

processing after the transform. 

For a continuous image domain a:SH2-»^H, the Radon transform is: 

a (p, <|>) = Radon[a](p, (j)) = f(x, y) 8(x cos((|)) + y sin«)) - p) dx dy, (1) 

where 8:91—»1R is the Dirac Delta function. 
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The angular coordinate $ ranges in the interval [-rc/2, 7t/2], and the distance p to 

the center C can assume negative values according to the convention in Figure 3a. 

1 »  —*  
y l<M ^' t/2 

1' 

11 & \ \ >P2 ,'^.„ <|>1,3 >0 

irV. . X X 
—► 

• N                               ■ 

P3 
/ 
/ 

P4   <f 
<o 

Of B 

Pk> 0 « Xk>0 

(a) Standard polar convention 

1 » ~1 
V IM <  71/2 

ir           * 
V* $._,_ -- a —,— 
\d2 di 

\ • 

C \j,'B^ i>0\ X 
 ► 

/ \«i. 3<o; 
da/ 

• 
• cUN V • 

qf-_ — IS- 
ir 

* 
< dk>0 < » yk = >0 

(b) Tomographie polar convention 

Figure 3: Polar coordinate conventions used in the Radon Transform. 

The interpretation for Radon[a](p, (j>) in equation (1), when "a" is a binary image, 

is the total length of the intersections of "on" areas of "a" and the line path LP<D given by 

the equation x cos(<|>) + y sin(<» - p = 0. In the discrete approximation of the Radon 

transform (DRT), this is roughly proportional to the number of "on" pixels crossed along 
this line. 

The DRT can be efficiently computed by the Fast Fourier Transform (FFT) 

algorithm because it can be expressed as the inverse one-dimensional transform in the 

radial variable p of the bidimensional Fourier Transform of f(x,y) [Ref. 12]. The DRT is 

commonly implemented using the polar convention (0, d) as in Figure 3b, 9 being the 

"direction of inspection" associated with line Lp<t). The discrete evaluation of the Radon 

Transform, R(m, n), can be displayed as an image called sinogram. 
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IV.   MODEL DESCRIPTION 

We present now our approach to the analysis of man-made structures in aerial 

photographs, which follows the same guidelines proposed by Ablameyko and 
Lagunovsky [Ref. 13, 14], but where the search for shapes is not limited to rectangles. 
Connectivity analysis of a graph derived from the line-segment representation of the 
image is performed aiming at the recognition of more general building-like contours. 

For easy visualization of the process through its phases, intermediate results refer 
to the same image, cropped from a 1993 NAPP photograph (NAPP Roll* 6354 Frame# 
253, of June 12, 1993) of Monterey, California. This image, in Figure 4 below shows an 
area of roughly 0.28 km2 centered at latitude 36.60237 N and longitude 121.86555 W; it 
was digitized at approximately 1.78 pixel/m, 8 bit/pixel, yielding a 256 gray-tone, 
340x260 pixel image. 

Figure 4: Sample NAPP aerial photograph of Monterey, California, USA. 
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EDGE DETECTION 

Basics 

Edge detection is the process of locating the main boundaries in a given image. 

Boundaries will exist between any two regions of the image exhibiting different average 

properties of color, luminance or texture. For gray-tone images, luminance differences 

are paramount. 

The general approach for edge detection in gray-tone images is to first compute 

the gradient magnitude of the image, and then find the strongest edge pixels by 

thresholding. This operation produces a binary image of the same size of the original one, 

with pixels set to one where the gradient magnitude was high enough, to indicate a 

plausible boundary pixel, and set to zero otherwise. 

2.        The Canny Algorithm for Edge Detection 

Use of a single threshold for detecting edge pixels may cause many important 

edge misses, if the threshold value is taken too high; if it is too low, some uninteresting 

boundaries or even noise in the image may cause the erroneous detection of edges. So 

Canny proposed [Ref. 15] an algorithm that introduces hysteresis in the thresholding. 

Edge strengths of topologically connected pixels are reenforced by strong gradient values 

of neighbor pixels. That improves the chances that major portions of boundary curves 

will be detected as a contiguous edge. The steps of Canny's algorithm are: 

(i) A Gaussian smoothing filter is applied to the original image. 

(ii) The gradient magnitude and direction is estimated at each pixel by directional 
differentiation operators. 

(iii) Edge candidate pixels are located by computing the points of relative maxima 

in the gradient magnitude along the gradient direction, an operation referred as non- 

maximal suppression. 
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(iv) Edge candidates are inspected by a topological threshold rule. All pixels with 

gradient magnitude above the high threshold TiH are assumed to be edge pixels. The "edge 

influence" is then propagated by recursively making every pixel with gradient magnitude 

higher than a low threshold r\L also an edge pixel provided there is some previously found 

edge pixel in its immediate 8-neighborhood (see Figure 5). 

ft-M-i Pi-l,j Pi-l,j+l 

Pi,M Pij Pi,j+1 

Pi+l,j-l Pi+l,j Pi+l,j-l 

Figure 5: Representation of the 8-connected neighborhood of a pixel py. 

Canny's method, one the most successful general edge-detection algorithms 

[Ref. 16], was chosen for this study after excelling in tests we did against multilevel 

thresholding edge detectors. It meets some optimality criteria concerning non-spurious 

edge detection, accuracy on the edge location and avoidance of double-edge detection, as 

shown in Canny's original paper of 1986 [Ref. 15] and textbooks on image processing 

[Ref. 17]. 

Application of Canny's method to Figure 4 gives Figure 6. Black appears where 

edge pixels were detected. Although detail is lost in this operation, the major part of the 

building and road contours is preserved, so that a trained human observer would be able 

to detect and recognize them. Generally speaking, any intermediate representation of 

visual information should still be meaningful to the eye of an expert. 
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Figure 6: Binary image obtained with Canny's edge detector. 

B.       EDGE ENHANCING BY MORPHOLOGICAL FILTERING 

To reduce the edge-coupling interference, morphologic filtering is used to rupture 

the edge segments before the extraction of primitive line segments described below. 

Good candidates for rupture points are corners of right angles and convergence points as 

forks, joints, and crosses. 

Morphologic filtering is performed by mapping small squared pixel 

neighborhoods using fast lookup table implementation. Specifically, we used 3x3 

neighborhoods and a lookup table of length 23x3 = 512. Figure 7 shows all the considered 

cases for rupture points. For such points the corresponding pixel in a special binary image 

K (same size of E) is set to one, with K(i, j) = 0 elsewhere. Figure 8 shows the rupture 

points for the edge image in Figure 6. It can be noticed that rounded corners were missed, 

but many others corners were detected. 
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Figure 7: 3x3 neighborhoods for detection of prospective rupture points in a binary edge 
image. 

The image segmentation is then performed on the difference image E - K , not on 

the original image E. K is used again in the primitive line segment extraction phase 

(IV.C.2): After segmentation, bounding boxes are enlarged by a one pixel-wide envelope 

and segments recomputed including points in K, to preserve more of edge information. 
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Figure 8: The calculated rupture points (black dots) superimposed on the edge image. 

C.       PRIMITIVE LINE EXTRACTION 

1. Basics 

The binary image produced by edge detection contains a set of edge pixels. The 

next task is to produce a list of line segments from this binary image, because these are 

key in identifying man-made structures. Primitive-line extraction is the first level of 

symbolic representation of the image and feature extraction. The features, called 

primitive line segments (PL), are straight-line segments along region boundaries in the 
original image. 

Line segments are defined by a pair of points (Pi, P2). In the two-dimensional 

space of images, each point location can be specified by two numbers, so each segment is 

defined by four numbers. Although the resolution of the original image is limited to the 

pixel size, the PL representation can use floating point numbers. The precision in 

segments location is potentially better than the pixel size because of the large number of 

pixels used to determine each one. 
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Since most of the analysis operations use the angular information, line segment 

data redundantly stores its inclination angle 6, the coordinates of the base point B 

(projection of the center of the image onto the line), and the distance d to the center of the 

image: 

PL = (6, d, Bi, Bj, PH, PIJ, Pa, P2j) (2) 

Figure 9 illustrates this. (0, d) are the polar coordinates with respect to the center 

C of the image, d being positive when the base point is above the center (following 

convention of Figure 3b). Pixel locations in the image, on the other hand, are expressed in 

the Cartesian coordinate system (i, j), with the origin at the upper-left corner of the 

image. 

i . 
, P2 of PLi 

Base point of PL, 

Pi Of PLi 

P, Of PU 

P2 Of PU 

Base point of PU 

Figure 9: Redundant coordinate system used to represent primitive lines. 

2.        Line Extraction with the Radon Transform 

The first step in line extraction is the segmentation of the binary edge image "E" 

into sets of connected pixels, using a 8-cell neighborhood to define pixel connectivity. 

The partition of edge pixels £, into the set {^} is accomplished such that equation (3) 
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holds.   Figure 10 exemplifies this operation for an edge image containing nE   =   3 
segments. 

:"■.      •   ■': 

f:::": ::c:^:3::.: 

/ 

- ■ aa   ■■•■ 

■G"_" 

■v    X 

Ei 

Figure 10: Example illustrating the segmentation of a binary edge image. 

nE nE 

5    =     U & , with n & = 0, 
i=l i=l 

(3) 

where 1 < i < TIE, ne = number of segments in E. 
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Extracting lines from an edge binary image is accomplished by the Radon 
Transform (presented in ELD). The Transform is applied to the bounding box F; around 
each pixel set % to save further computation time, resulting in a coefficient array R; that 

can also be plotted as an image. Figure 11 shows the plot of the Radon Transform for 
edge image E3. The relative maxima in the transform corresponds to possible lines in the 
binary image. In Figure 11, there are two relative maxima, marked with crossing lines, 

the one at (93li, d3,0 = (53°, 6) and one at (e3;2, d3,2) = (-34°, 8). 
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Figure 11: Plotting of R3, the Radon Transform for edge image E3. 

3.        Determining Line Segment Endpoints 

The Radon Transform maxima give only lines through potential line segments; 
they do not give the endpoints of the line segments. This second task is accomplished by 
first masking out all the pixels in Fi not on a 3-pixel-wide linear band centered on the 
support line. Because this masking may break the connectivity of the pixels in the linear 
band, a new segmentation is done with these pixels. For each of the resulting clusters, a 
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primitive line segment can be fit using a least-squares estimate based on the projections 

on the support line of those pixels at extreme xy coordinates. 

In order to reduce inter-edge influence, after extracting all possible primitive line 

segments in one direction, instead of continuing and proceeding with the next relative 

maximum, the Radon Transform is recomputed on the remaining pixels. To guarantee 

best accuracy, only the line associated with the maximum Radon coefficient is inspected 

at each iteration. This process is recursively repeated until the maximum Radon 

coefficient reaches a minimum value corresponding to the integration of two pixels. At 

this point, the original edge image is exhausted and no more useful pixels remain 

unconverted to primitive line segments. 

This transform recomputation slows the algorithm, but not directly in the 

proportion of the number of iterations, because the order of the Radon transform at each 

iteration becomes smaller too. Its benefit is a more accurate conversion of edge pixels 

into primitive line segments in low-definition images once mutual edge-coupling 

interference is strongly reduced. A further enhancement in the line extraction is a line- 

fitting algorithm based on the minimization of squared distances from pixels in a cluster 
to the modeling line (see item IV.C.4 below). 

4.        Mean Square Error Line Segment Estimator 

The Radon line extraction of the segmented edge image just described in IV.C.2, 

isolates clusters of aligned 8-connected pixels. For each of these clusters a line segment is 

computed by projecting the center of the end-pixels on the line that minimizes the sum of 

squared distances to them. If (dj, 60 are the polar coordinates of each of the c pixels Pi in 

a cluster, for L(d, 6) a given line, it can be derived that (see Figure 12): 

8i   =  d; cos(0 - Gj) - d (4) 
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L(d,0) 

Pi (d,,e,)^.  

9i 

Figure 12: Treating distances Ej from the center of pixels Pi to the fitting line L as errors 
to be minimized by least squares method. 

2 2 £j has a quadratic form in d, and it always non-negative. Hence by making 
2 ~ 2 

32 £j/3d = 0, the distance d that minimizes 2 e, for a fixed angle 6 is: 

d  =   £ di cos(0 - 00 / c 
i=l 

(5) 

~ 2 2 
If 9 is an angle that minimizes 2 £,, then 32 q/30 = 0 and we derive: 

V di cos(0 - 0i) sin(0 - 00 = d ^ sin(0 - 00 (6) 

i=l i=l 

Simultaneously searching in 0 and d for minimum in 2 q requires making 0 = 0 
in equation (5) and d = d in equation (6). Solving the system of equations formed: 

^ c d; cos(0 - 00 sin(0 - 00 = ^di cos(0 - 00 .^ sin(0 - 0j) (7) 

i=l i=l 
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Developing (7) gives two possible values for 0: 

~ ,-ß±Vß2-4ay N 6 = arc tan ( K    v^a 
L"), (8) 

where: 

c                                              c C 

a = S c di sin(9i) cos(0i) - J £ di sin(0O cos(9j)                                        (9) 
i=l                                i=l j=l 

C C       C 

ß = X c dj (cos2(0i) - sin2(0i)) - £ £ d; (cos(0j) cos(0j) - sin(0i) sin(0j))     (10) 
i=l i=i j=i 

Y = X Sdicos(0i)sin(0j) - £ c dj sin(0i) cos(0O (11) 
i=i j=i i=i 

For each trial 0, a value for d is computed by equation (5). The fitting line L(d, 0) 

is found by selecting the 0 and d that yield minimum computed 2 Ej through equation (4). 

If all pixels were either vertically or horizontally aligned with the reference point C, 

quantity a in the above equations would be zero, leaving 0 undetermined. To prevent 

that, instead of using the actual center of the image, whose coordinates are always 

multiples of 0.5, the polar origin for this computation is momentarily displaced by a 

number that is not a multiple of 0.5. After 0 is computed, the polar origin is brought back 

to the center of the image, so that the correct parameters for the line segment are 

extracted. Situations where a real number for the angle 0 does not exist (ß2 - 4r/y < 0) in 

practice will not occur because the Radon Transform masking imposes some a priori 
alignment to the pixels. 

The missing link to obtain the parametric representation of the cluster of pixels is 

the estimation of the endpoints of the line segment on the support line L(d, 0). They are 

computed by taking those projections of Pä on L with minimum and maximum (x, y) 
coordinates. 
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Figure 13 illustrates the geometry of the line fitting process. Along an edge, the 

pixels not selected by the Radon maximum-coefficient mask are left for the next iteration 

of the algorithm (black pixels, on the right). The pixels that were fit by the line segment 

are removed from consideration for subsequent edges, except the end pixels, which are 

spared for newer iterations. This last action helps line segments extracted from 

contiguous edges to have endpoints closer to each other, help subsequent building- 

contour tracing (see IV.F). 

i ■■HI 
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. ^_ Pixels not consumed, 
in this step       ; 

2       4       6       8      10     12      14 
PL: P1 = (10.3388,4.5914),  P2 = (5.3798,12.6168) 

Figure 13: Primitive line segment extraction with Radon masking (light gray) and line 
fitting of the enclosed pixels (dark gray). 

5.        The Overall Effect of the PL Extraction Phase 

The final set of primitive line segments visually resembles the edge binary image 

when plotted. For the example image of Figure 6, the plot of its 1858 primitive line 

segments can be seen in Figure 14. Some isolated groups of pixels were "lost", but this is 

actually an additional convenient simplification of the original image. 
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Figure 14: Plotting of the final line segments extracted from the image in Figure 6. 

This resemblance is in fact so high that may confuse the observer. Enlarging 
corresponding regions of both images (Figure 15), the parametric nature of the primitive 
lines becomes apparent. 

100 

110 

120 ' 

230      240      250      260      270 230     240     250     260     270 

Figure 15: Detail comparing edge pixels (left) with computed line segments (right). 
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D.       CLUSTERING OF PRIMITIVE LINE SEGMENTS 

The typical number of primitive line segments extracted from our test images was 

one per 50 pixels. Images of modest size can produce line-segment descriptions with 

thousands of lines. The algorithms for higher-level feature extraction, that take line 

segments as input, search for combinations of line segments that will match some 

positional relationships. This can be very expensive computationally (ö(n ) or higher). 

To improve computational speed, the initial line-segment set is broken into 

smaller-sized sets by a relatively fast clustering algorithm. Since urban areas and 

buildings are the main objects of interest, partition sets should be constituted by lines 

within blocks, streets being the boundaries. This partition should satisfy the following 

constraints: 

(i) The line segments of any real-world object should be in the same partition. 

(ii) Partitions should correspond to contiguous areas in the original image. 

If an algorithm based on the line space search is #(ns), s > 1, pre-clustering the 

primitive lines into k groups of m lines will result in reduction of the complexity order of 

the problem. The new computational time will be in the order of: 

tf(ktf(ms)) = ö(-^Oms)) = tfCnm8"1) (12) 

If the number m of lines in each cluster could be limited, the factor ms_1 would be 

modeled as a constant, and the application of the higher-level algorithms would be 0(n), 

yet the large constant involved ms_1 could make this a "slow" 0(n) algorithm. 

0(n m5"1) = m5'1 0(r\) = 0(n) (13) 

The algorithm used to cluster the line segments has two steps: First, an undirected 

graph G is calculated for endpoints of the primitive line segments. The vertices of the 

graph G correspond to line segments and an edge is created if either: 

(i) The two line segments touch at some of their endpoints, within the resolution 

of the image; or 
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(ii) The line segments are perpendicular to each other, within an angle of 7t/8 
radians, and their touching endpoints are closer than the geometric mean of their lengths. 

Second, clusters of connected segments are found by looking for connected sub- 

graphs of G. Since single-segment clusters are uninteresting, we discard segments that 
remained unclustered. 

The criterion in (i) is intuitive. The criterion in (ii) was introduced because 
perpendicular lines tend to be related in man-made structures. It has the desirable 

property of being scale-independent. The criterion of minimum length was also tried, but 
did not yield as good results as the geometric mean. 

Application of the algorithm to the primitive lines in Figure 14 results in Figure 

16, where the partitions obtained are coded in different colors. In this example, of 1858 

original line segments, 5% were discarded after being unclustered; the remaining were 

clustered into 71 sets with the maximum of 351 and the average of 25 line segments per 
cluster. In images tested, the clusters appeared more dependent on the nature of urban 
area than either the size of image or the total number of lines extracted. 

This gives some support to the hypothesis upon which equation (13) was derived. 
Since the algorithm that produces the connection matrix G runs in time of order Ö(n2), 
this might also be the order of the global line segment analysis, provided the order of 
higher-level feature extraction in the following phases of the analysis is kept at 
polynomial order. 
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Figure 16: Clustering of primitive line segments, plotted with assorted colors, for the 
image in Figure 4. 

E.        MERGING OF PRIMITIVE LINE SEGMENTS 

The aerial visibility of edges of buildings and other objects may be obstructed by 
trees or shade, or may be degraded due to lack of contrast between the object and the 
background. This may cause a single physical edge to be segmented into several collinear 
line segments. To facilitate the detection of the polygonal shapes that characterize man- 
made structures like buildings, we merge close and approximately collinear primitive line 

segments. 

1.        The Merge Procedure 

Merging of line segments is accomplished by: 
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(i) Find pairs (Li, L2) of line segments which are oriented in approximately the 

same direction, within a maximum heading deviation of A0max, and whose distances to 

the center of the image differ at most by Admax. 

(ii) Use a relative position criterion to eliminate pairs in a side-by-side 

configuration, as exemplified in Figure 17(b). Require that the maximum distance from 

an endpoint of Li to an endpoint of L2 be attained at the points that are opposite to those 

where the minimum distance is, as in Figure 17(a). 

(a) 

Figure 17: Examples of favorable (a) and unfavorable (b) relative positions for merge 
candidate line segments Li and L2. 

(iii) Require also that no other line segment have endpoints lying near the 

endpoints of the candidate segments, to prevent the suppression of possible corners (see 

Figure 18). 

Merge 

O 

Li 

\ 
-34 

Figure 18: The presence of L3 inhibits the merging of aligned segments Li and L2, thus 
preserving the junction of Li, L2 and L3; L3 and L4, on the other hand, can be merged. 
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(iv) Eliminate segment pairs failing to satisfy a proximity criterion: The minimum 

distance between endpoints of two candidate line segments should be less than the 

smaller length of the two line segments. In Figure 17, we must have: 

d^n < min{ |I4 |L2| }, (14) 

where dnün =   min{djj |i endpoint of Li, j endpoint of L2} (15) 

(v) Eliminate pairs of segments failing an alignment criterion. Let hyk be the 

oriented distance (projection) from endpoint Pw of line segment k to the support line of 

line segment j: 

hijk = distance(Pid, Lj) (16) 

Alignment is met by requiring that the angle subtended by rays through the 

endpoints of one line segment and rooted in one endpoint of the other segment be less 

than a constant ASmax. Additionally, to avoid the merging of parallel lines, the distance of 

endpoints of one segment to the other line should be less than the resolution distance 2\/2 

pixels, if these endpoints are in the same side of the plane, with respect to the second line. 

In terms of the dy and the hyk, either of the following conditions should apply (see Figure 

19) to the pair of line segments (Li, L2): 

min{max{|hii2/dii|, |h2i2/di2|}, max{|hn2/d2i|, |h2i2/d22|}} < simASmax) (17) 

hn2h2i2>0 => maxflhml, |h2i2|}<2>/T 

or 

min{max{|hi2i/dn|, |h22i/d2i|}, max{|hi21/d12|, |h22i/d22|}} < sin(ASnm) (18) 

hui h22] > 0 => max{|h,2i|, |h22i|} < 2^/T 
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Figure 19: Alignment criterion for two line segments. 

The resolution distance of 2-{l is the maximum distance between any two 

points lying in the area of two neighbor pixels in 8-neighborhood. Such a condition is met 

when the points are in opposite corners of diagonally touching pixels. The angle AS,^ 
was determined by trials and fixed at 7i/36 radians. 

(vi) Finally, cluster the qualified merge candidate segments in fully connected 
sets. Then only merge a set if every pair within that set satisfies the merge criteria. This 
will assure a global alignment for the line segments, rejecting the merge of patterns like 
(b) and (c) in Figure 20. 

Figure 20: In all three clusters, the merging criteria are satisfied by any two consecutive 
line segments Li, and no other pairs; however, only the cluster on the left exhibits a 
global alignment. 
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2.        Overall Merge Effect 

Merging the qualified primitive line segments does not affect the general 
appearance of the line segment plot, as seen in Figure 14 or Figure 16. But it does 
improve the edge extraction, as exemplified in the zoomed detail of Figure 21. 
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Figure 21: The effect of merging primitive line segments on the contour of a building: 
Before merging (left) and after merging (right). 

F.        SEARCH FOR BUILDINGS 

Man-made constructions such as simple buildings and houses usually fit 
rectangular shapes well. But more complex buildings are better modeled by closed ortho- 
polygonal lines (polygons made of right angles). The detection of these can be 
accomplished by looking for cycles in a graph derived from the line segment 
representation of the image. In this graph, the vertices are endpoints of the line segments, 
and edges will be created where some useful geometric relationship exists between 
endpoints, similarly to the clustering phase described in IV.D. 

1.        Endpoints Graph Formulation 

For each cluster Ck containing Nk primitive line segments extracted from the 

original image, we define a graph Tk(Vk, GO where: 
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Vk  =   {v2 , v2 , v3 ,..., v2Nk } is the set of endpoints of the line segments in Ck; 

and 

Gk   =    [gy ],   1 < i, j <  2Nk is an edge connection matrix for vertices in Vk, 

defined according to the type of geometric relationship between Vj and Vj, as follows: 

Type 1: gij = 1 <=» Vj and Vj are endpoints of the same line segment; 

Type 2: g;j = 2 <=> v; is in the M21 neighborhood of Vj (see Figure 22) but Vj and Vj 

(as shown in Figure 22) are not endpoints of the same line segment (proximity criterion); 

,y 
^ 

& 

v, 

v; 

Figure 22: The Nlx neighborhood as a criterion for connecting endpoints in the graph Tk. 

Type 3: gij = 3 «=» v; and Vj are endpoints of line segments which are 

approximately perpendicular, and v; and Vj are closer than the geometric mean of the 

lengths of the line segments, but not enough close to be /Y21-neighboors (situation shown 
in Figure 23); 

d*<mi.|y 

|e-7i/2|<7t/8 

Figure 23: Connecting endpoints in corner position. 
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Type 4: gy = 4 <=> v; and Vj are endpoints of two approximately perpendicular line 

segments and the distance between V; and the line segment containing Vj (or vice-versa) is 

less then 2\j2 ; 

- d d < 2 \[2 pixel 

|e | < 7t/8 

Figure 24: Connecting endpoints in "T" position. 

Type 5: gy = 5 <=> v, and Vj are endpoints of approximately parallel (within rc/18 

radians) line segments which are closer then the minimum of their lengths. Also, the line 

passing though v; and Vj should be approximately perpendicular to the two line segments 

(within rc/18 radians to the larger line segment). 

e„ 

max{d.., ay} < minflg, |L2|} 

min{|0sUeJ}<7t/18 

Figure 25: Connecting endpoints of parallel line segments in opposition. 

The gij will be zero otherwise, representing that there is no relationship (and thus 

no edge in the graph) between endpoints Vj and Vj. 
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2.        Finding Cycles in the Endpoints Graph 

Building candidates are found by searching for cycles in the graphs Tk using 
depth-first search [Ref. 18]. The basic version of this algorithm travels along the edges 
until a closed path is found. When it is not possible to travel further, it backs up along the 
path until a vertex that offers a path option not tried before is found, and then it follows it. 
If backup continues until the initial vertex is found and no more path options remain, then 

the search for cycles starting at that node was unsuccessful. The search is restricted so 
that the current path should not contain the same edge twice. 

Figure 26 shows an example set of line segments and the tree that was generated 

for finding a cycle from vi; Figure 27 shows the implicit connection graph used. In this 

case, node vi is visited again at the sixth move, at a depth h=6 from the root node. 
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Figure 26: Example of standard depth-first search for cycles in graph T. 
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V14 1 

Figure 27: Graph T for the set of primitive line segments in Figure 26. Thick edges 
correspond to line segments. Thin edges signify other type of geometric relationship. 

To guarantee that the searching path does not fold over itself or the cycle collapse 

into a double cycle, the visited nodes (except the root node) are prohibited to occur twice 

in the path. So are the nodes associated with rejected branching options at a given search 

pass. This is called the visited/prohibited rule. In Figure 27 for instance, after jumping 

from v2 to v8, nodes vn and vn, as well as node v2 itself, become prohibited for that path. 

Because of the visited/prohibited rule, the other extremity of the line segment of 

the starting node will always be included in the cycle, if a cycle is found. The line 

segment containing the starting node is referenced as the starting edge. 

To prevent finding the same cycle multiple times, a list of remaining candidate 

edges is kept. Every time a cycle is found, their edges are removed from this list. 

3.        Enhanced Cycle Search 

The computational cost to find all the cycles in a graph is high. To limit the search 

to cycles likely to correspond to building perimeters (those of smaller total lengths), we 

modified the base algorithm: 

(i) The number of vertices in a path having alternative directions (three or more 

edges) is limited by a maximum. 
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(ii) A move from a node v; is restricted to be along edge (VJ, Vj), if gjj=l in the 
connection matrix and Vj is not yet discarded by the visited/prohibited rule. Particularly, 
the first move away from the root node will always traverse an existing line segment. 

(iii) At every node, the jumping options (edges in T) will be sorted according to 
the increasing Euclidean distances from the other endpoints of the associate line segments 
to the starting node. The first branch to be depth-searched will be the one containing the 
node that minimizes that distance and so on. 

4. Elimination of Spurious Cycles 

To eliminate likely spurious cycles, the algorithm discards all cycles that contain 

some other cycle, or that the set of constituent line segments of a given cycle is a subset 
of those of another cycle. 

5. Cycle Filtering for Buildings 

Independently of scale, some cycles are more likely to represent buildings than 
others (see Figure 28). 

/    \ 

Figure 28: Example of possible detected building candidates from cycles in T. Intuitively, 
the first on the left is not likely to be a building while the two on the right are. 
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To select buildings among the extracted polygonal paths, some building- 

likelihood measures are computed from the following assumed properties: 

(i) The major part of the polygon perimeter should coincide with (i.e., intersect) 

original primitive line segments; 

(ii) Most of the lateral faces of buildings should be either parallel or perpendicular 

to largest face of the building; and 

(iii) The larger the lateral faces, the less deviation they should exhibit from either 

the parallel or the perpendicular directions to the largest face of the building. 

Deviation of each of these properties from an ideal can be measured. If the 
building has an unusual shape such as an equilateral triangle or a pentagon, these 

properties will not hold, but this is not a likely case. 

Figure 29 shows an example using the polygon (Qi, Q2,..., QM) obtained from the 

cycle (P11, P12,..., PMI, PM2>- 

QI-^ 

Figure 29: Analysis of polygonal paths formed derived from line segments. 
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Defining PM+i = Pi and QM+1 = Qx the three measures are defined as below: 

(i) Unsupported perimeter fraction: 

f   =    1 

I 
k=l 

PkiPk2 nQkQk+i | 

M 

S |QkQk+i| 
k=l 

(19) 

(ii) Average weighted non-orthogonality factor: 

M 

I 
k=l 
X |QkQk+i|.sin(2|ek - 6i*| mod 7i/2) 

w    = 
M 

(20) 

X |QkQ: k+i 

k=l 

(iii) Maximum weighted non-orthogonality factor: 

max{|QkQk+i|. sin(2|0k - 6i*| mod7t/2) 

wn (21) 

max{|QkQk+i|} 

where i* in equations (20) and (21) is such that |Qi*Qi*+i| = max{|QkQk+i|}. 
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All these measures range in the interval [0,1]. The closer each is to zero, the more 

likely that the polygon Q is associated with a building. Higher values of these deviation 

measures are more acceptable with cycles made of fewer segments. So the detection of 

buildings will require thresholds 3>f, <3>w and 3>Wmax that are non-increasing functions of 
the number n of line segments in the cycle. Reasonable functions yielding good 

performance were experimentally determined as shown in Figure 30. 

1 

0.8 

0.6 

0.4 
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0.9 n < 3 n = 4 
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5 < n < 9 

Wmax 0.35 

n > 10 

0.30 

- 

0.50 W 

- 

0.25 f 1  *•"! 

m,   I 0.20 

i                       i 

0 2 4 6 8 10 

n, number of primitive line segments forming a polygon. 

12 

Figure 30: Threshold functions experimentally determined for the computed unsupported 
perimeter fraction (f), the average weighted non-orthogonality factor (w), and the 
maximum weighted non-orthogonality factor (wmax). 

Figure 31 shows example results of the cycle detection phase. Cycles that satisfy 
the thresholds for all the three thresholds are filled in black; the others are plotted 
unfilled. The latter were often found to correspond to non-building man-made structures, 

like parking lots, open-sky storage areas, or blocks of houses. 
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Figure 31: Detected segment cycles in the image of Figure 16; building-like cycles are 
filled in black. 

6.        Merging Component Cycles of Buildings 

Complex buildings and clusters of buildings will often appear as adjacent and 
overlapping cycles. So in a final step, all component cycles with non-null intersection 
(i.e., sharing some line segment) are merged, producing a target table (like Table 2). 
Entries are the coordinates of the center of mass of each building cluster, its estimated 
area, average pixel luminance, and standard deviation of the pixel luminance. 

I   Building Cluster List for Image in 'H:\MRY\MRYl.tif | 
+ + + + + + + 

| Target ID | Coord I | Coord J |  Area (m2) |  Av Lum |  Std Dev Lum | 
+ + + + + 

| 00001 
j 00002 
j 00003 
I 00004 

j   00075 
+  

|   194.8 253.1 | 
|   234.9 245.3 | 
|    78.4 235.1 | 
|   115.9 211.8 | 

|    99.3 216.8 | 

62 33.2 | 
328 74.4 | 
78 170.0 | 

146 132.2 | 

89 98.7 | 
-+ + +  

23.3 | 
30.5 j 
37.3 j 
41.1 j 

  I 
37.5 j 
 + 

Table 2: Example target table produced by the program, listing the probable building 
clusters found in Figure 4 and properties. 
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In this simplified approach, shadow detection is not implemented, and shadows 

may be included with building clusters. This is a problem only if the sun angle is low 
relative to the building height/length ratio and the shadow is aligned with a face of the 
building. Otherwise, the cycle containing that shadow will have its non-orthogonality 
factor increased, which will tend to cause its rejection in the cycle filtering phase 

(explained in IV.F.5). 

In Figure 32, recognized building clusters are shown with homogeneous random 

color. A white cross is placed at the center of each cluster. A total of 75 clusters were 

formed from 97 detected cycles. 

Figure 32: Plot of recognized probable building clusters, after merging of component 
cycles. Random colors are assigned to clusters for improved visualization. 
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G. USING NEURAL NETWORKS 

1. False Alarm Reduction with Neural Networks 

The Of, <&w and <E>Wmax thresholds functions (see Figure 30) that help recognize a 

building cycle were chosen heuristically. If enough training images are available, we 

could improve building cluster recognition by training a feed-forward artificial neural 

network (Multi-Layer Perceptron) for the task [Ref. 19], as shown in Figure 33. The 

network could take as inputs at least the quantities f, w , wmax defined in equations (19) 

through (21), and n, the number of line segments, yielding binary outputs Cj to distinguish 

classes of similarly orthogonal-shaped man-made objects. 

Multilayer Perceptron 

Maximum Finder 
Layer 

N-to-C Encoder 

Figure 33: Classifier architecture using neural networks for the classification of cycles in 
the endpoint graph. 

When edges along the contour of an object are so degraded that no cycle around it 

is found, this architecture would not be helpful. So the neural network would only 

significantly reduce the false alarm ratio, not the miss ratio. 
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2.        Selecting More Parameters for the Classification of Cycles 

Other features associated with the region enclosed by the detected polygon could 

be used as inputs for the neural network to improve its performance: 

(i) Size-related features, for example: area of the region, perimeter, moment of 

inertia radius, maximum distance from center of inertia, and circumvention radius. 

(ii) Luminance-related features: total brightness, average brightness, estimated 

standard deviation of the brightness, displacement of brightness center (mass center 

weighted by luminance) from mass center, and moment of inertia radius using the 

brightness as the density function. 

(iii) Other shape related features: the ratio of the maximum and minimum 

coefficients of the Radon Transform of the object, the ratio of the moment of inertia 

radius to the circumvention radius, the ratio of the displacement of center of brightness to 

circumvention radius ratio, and the sphericity, defined as four times the area divided by 

the square of the perimeter. 

Preliminary tests [Ref. 20] showed promising results with neural networks for 

feature analysis and classification of objects in aerial photographs. In this study, 

buildings, road sections and trees were correctly differentiated in essentially all cases 

tested (10 buildings, 10 paved road sections, 10 unpaved roads, and 10 trees), with only a 

slight confusion occurring in between paved and unpaved roads. For meaningful results 

however, much larger training and validation data sets need to be used. 

A neural network could also recognize shadows of objects. This would improve 

the accuracy in the estimation of the center of mass of each building cluster, and could 

also facilitate the three-dimensional modeling of the scenario. 

49 



THIS PAGE INTENTIONALLY LEFT BLANK 

50 



V.     RESULTS FROM EXPERIMENTATION 

A.       QUALITY ASSESSMENT OF THE MODEL 

The quality of the recognition of building clusters can be evaluated by two error 

measures: The false alarm ratio (false positive recognition) and the miss ratio (false 

negative recognition). The first is obtained by dividing the number of incorrectly labeled 

building clusters by the total number labeled; the second, by dividing the total number of 

building clusters not recognized by the total number of building clusters. Both numbers 

should be zero for a perfect recognition. Because the resolution of the NAPP images is 

only slightly better than the minimum necessary for recognition of buildings (see section 

II.F.l), houses and small buildings were not counted (when missed) in evaluating our 

automated analysis. 

Appendix A contains the detailed description of the primary test image used 

(Figure 4). This image includes residential areas as well as public, commercial and 

industrial buildings. Two small regions had to be excluded from the results due to 

unavailability of reference data. The reasons in these two cases were: 

(i) Part of a block was completely remodeled since the photograph was taken six 

years ago, and we could not recover the original layout of that area; and 

(ii) One small area (south of US Highway 1), of difficult access for a walk- 

through visit, was not inspected. 

The recognition statistics for building clusters are summarized in Table 3. The 

false positive (ep) and false negative (en) recognition ratios were then 0.133 and 0.177 

respectively, similar to those obtained by others using different edge-based techniques 

[Ref. 21, 22]. 

Number of building clusters correctly recognized 

Number of building clusters incorrectly recognized 

Number of building clusters missed (i.e., not recognized) 

nc = 65 

nw= 10 

nM=14 

Table 3: Summary of performance of our building recognition technique. 
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1.        False Negative Errors 

False negative errors (missing buildings) can be one of the following: 

(i) errors due to deficient primitive line-segment extraction; 

(ii) errors due to splitting of line segments of a building at cluster boundaries; and 

(iii) errors due to oversimplification in the cycle-filtering criterion. 

Errors of type (i) were due to the limitations of the edge extraction algorithm 
(Canny's). When edges are interrupted along the sides of buildings in consequence of 

lack of contrast or obstacles, the line segments extracted will be fragmented, and the 

building may be missed. And with too-small structures, the corners tend to be rounded, 

interfering with the line-segment extraction. An example is buildings i and j in Figure 34. 

This error was the cause for 50% (7/14) of the missing buildings (a, c, e, h, i, j and 1), and 
could be reduced by improving the edge-finding algorithm. 

■     .-.'-.■ . ■ 

Figure 34: Detail showing examples of missing buildings (i and j) due to defective line 
edge and line segment extraction. 

Errors of type (ii)  are due to imperfect line-segment clustering preceding 
connectivity analysis of the endpoints graph. Figure 35 shows a sequence of steps causing 
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failure to recognize buildings b and d. Since cycles are only searched within each cluster 
of line segments, problems occur when a building contour is split into different clusters. 
These errors, responsible for 14% (2/14) of the missing buildings in the tested image, 
could have been eliminated if the line segment clustering were suppressed, but then the 

complexity of the algorithm would increase considerably. 

Figure 35: Examples of missing buildings (b and d) due to the splitting of perimeter line 
segments at cluster boundaries. 

Finally, errors of type (iii) which account for 35% (5 /14) of the misses and a 6% 
of the overall false negative recognition ratio, seem to be intrinsic to the devised cycle 
filtering algorithm. To eliminate them a major modification in the algorithm is necessary. 

2. False Positive Errors 

All the false positive errors were entities with contours of plausible building 
shapes: Three wooded road divider sections (targets id 50, 51 and 52), two parking lots 
(targets id 30 and 64), one partially fenced private drive (target id 66), one tree 
surrounded by a paved path on the corner of a block (target id 1), one school playground 
(targets id 37), and two square bare ground areas (target id 65 and 71). All of these except 
the last two were man-made structures, which makes the errors less serious. These errors 
were to be expected, for the algorithm used does not consider luminance, texture, or 
relationships to others neighbor structures, all of which could improve performance. 
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B. OTHER ERROR MEASURES 

Beyond the correctness of the building recognition, the correctness of position 

determination also matters. In our experiment the field determination did not include the 

precise position and area of the buildings in the testing data set. However, we did confirm 

that all estimated centers of targets were within the respective actual building clusters. 

C.       IMPLEMENTATION ISSUES 

All the programs were implemented in Matlab version 5.3, running under the 

Windows NT 4.0 operating system, a language that offers an interpreter command 

interface and debugging facilities. All the images were stored in the uncompressed gray- 

level Tagged Image File Format (TIFF), a widely used bitmap file format. 

The edge-based approach for finding buildings is computationally expensive. For 

instance, roughly 2 million operations are required to find a single 51x51 pixel square 

pattern in a simple test image of 100 x 100 pixels (see Figure 36). 

20 

40 
1 

60 

80 

-inn 
20    40    60    80   100 20    40    60   80   100 20    40    60    80   100 

Figure 36: Testing the algorithm on a simple artificial image: test pattern, extracted 
edges, and recognized shape. 

For the main testing image used (Figure 4), 340 x 260 pixels in size and 

approximately 3 square meters per pixel, the number of necessary operations to complete 

the algorithm was of 7.4 x 108, including the graphic output. Running Matlab on a 

Pentium II processor at 266 MHz with 64MBytes of memory (about 72,000 sustained 

floating-point operations per second), this computation took 2 hours and 50 minutes. If a 
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compiled version of the system could be implemented and run on a 1 Mflops platform, a 
modest computing performance for today standards, the system should process around 

380 square meters of urban area per second. We have focussed however on the 

algorithms, not optimization of the code; much could be done to improve the efficiency 

and the speed of the programs. 

In total, about 4000 lines of source code were created to implement the algorithm, 
including comments and not including the source code of the powerful Matlab libraries 

used. Program listing is included in Appendix B. 
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VI.   CONCLUSIONS 

An algorithm for finding building clusters in orthorectified aerial photographs was 
implemented and tested on an urban area. The technique used was based on the 

connectivity analysis of a graph derived from the geometric relationships among 
endpoints of line segments that model edges; the segments were extracted from the image 

with the Radon Transform. The connectivity analysis reveals cycles in the graphs that, 
once filtered for spurious closed paths, indicate candidate buildings. 

The 2-meter panchromatic resolution of the test image is barely enough for a 

human expert to recognize the smaller buildings. Under these conditions, the obtained 
false alarm and miss ratios were respectively 13% and 18%, not counting errors on 
houses and very small buildings. Although not perfect, these figures should be able to 
reduce substantially the workload of human analyst in a computer-aided environment. 

Automatic aerial image analysis is a complex problem. The complete validation 
of the algorithms and ideas proposed here requires more testing sets and extended 
conditions. In our tests, the dominant cause for false negative errors (misses) was the 
edge detection algorithm (Canny's), while the false positive errors where due to the 
assumption that shape alone can determine buildings. We believe that our edge-based 
recognition of man-made structures will produce better results if combined with region- 
based techniques. One way to correct this is the consideration of luminance information, 
perhaps by using a feed-forward neural network for postprocessing. 

While the speed of our algorithm may be disappointing, due to the number of 
mathematical operations involved, there is much parallelism opportunity do be exploited 
that could make it much faster. It also could be helpful the introduction of a line-segment 
pruning step before the clustering of primitive line segments, to decrease the contour 
density, similarly as done by Paparoditis et Al. [Ref. 23]. 

With the increasing availability of high-resolution imagery from both military and 
commercial sensors, better resolutions that 2-meter will soon be abundantly available. 
Since we can recognize buildings even at coarser resolution with our approach, it should 
be able to recognize additional details within buildings and other man-made structures 
when using higher-resolution images. 
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APPENDIX A. EXPERIMENT NOTEBOOK 

Figure 37 shows the building clusters detected in the test image (Figure 4). 

Statistics on them are shown in Table 4. 

200 

250 

Figure 37: The 75 building clusters found in Figure 32 by our program. 

Building Cluster List  for Image  in   'H:\MRY\MRYl.tif 
 + + + + +  
Target ID | Coord I | Coord J |  Area (m2) |  Av Lum |  Std Dev Lum 

00001 194.8 253.1 | 
00002 234.9 245.3 | 
00003 78.4 235.1 | 
00004 115.9 211.8 | 
00005 139.5 157.3 | 
00006 199.3 183.8 | 
00007 253.9 213.6 | 

62 33 2 I 
328 74 4 | 
78 170 o 1 

146 132 2 I 
57 235 6 1 
46 99 •9 1 
51 65 .5 | 

23.3 
30.5 
37.3 
41.1 
17.7 
28.7 
26.1 
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I Target ID | 
+ +. 

00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
00057 
00058 

Coord I | Coord J |  Area (m2) |  Av Lum |  Std Dev Lum | 

146.3 
112.7 
146.7 
124.0 
189.2 
208.6 
232 
225 
109 
128 
139 
164 
174 
133 
146.8 
94 
91 

173 
155 
105 
92 

134 
140.9 
170.3 
195 
173 
164 
191 
213 
196 
87 
81 
90 
41 

103 
71 
67 
52.9 
34.2 
58 
10 
15 

164 
76 

149 
76 
61 
66.3 
85.0 
7.2 
4.9 

.1 

.0 

.6 

.1 

.5 

.6 

.7 

.7 

.3 

.5 

.7 

.5 

.5 

.5 

.2 

.7 

.3 

.2 

.1 

.0 

.6 

183.5 
194.7 
223.5 
218.2 
226 
202 
180 
188 
292 
273 
282 
272 
287.0 
314.2 
246.1 
256 
278. 
248. 
260. 
247. 
327. 
237. 
327. 
97. 
97. 
7. 

131.8 
109, 
57. 
72.4 
12.4 
79.9 
68.2 
29.3 
38.6 
13.8 
98.2 
58.7 

114.0 
181.6 
129.8 
160. 
57. 

198. 
84. 

122.3 
312.5 
285.4 
314.8 
66.7 
5.0 

.0 

.9 

.0 

.2 

1689 |   187.2 | 
402 |   154.9 | 
352 |   174.6 | 
51 |   146.5 | 

2766 |   178.5 | 
382 |    78.1 | 
276 129.1 | 
48 103.8 | 

607 143.7 | 
333 73.8 | 
177 203.1 | 
391 235.7 | 

2400 182.8 | 
838 202.8 | 

1884 194.8 | 
946 243.1 | 
794 231.2 | 
192 63.0 | 
108 188.7 | 

1114 220.3 | 
105 226.4 | 
81 134.6 | 

155 70.3 | 
174 66.2 | 
189 226.6 | 
116 203.8 | 
48 124.3 | 

109 227.9 | 
2622 223.1 | 
350 221.6 | 
206 154.3 | 
195 j 95.0 | 
220 | 66.4 | 
89 | 106.0 | 

298 | 101.0 | 
108 | 174.0 | 
131 | 44.1 | 
333 | 91.7 | 
361 | 70.3 | 

2703 | 206.3 | 
355 | 126.4 | 
87 | 131.6 | 

108 | 72.0 | 
1442 | 47.9 | 
451 | 30.4 | 
130 | 91.8 | 

1328 | 229.5 | 
98 | 105.6 | 

152 | 140.6 | 
70 | 93.0 | 
95 | 79.8 | 

80.0 
29.7 
25.2 | 
43.4 | 
91.5 | 
45.1 | 
52.2 | 
39.3 | 
29.2 | 
23.0 | 
58.9 | 
38.0 | 
40.7 | 
43.4 | 
62.6 | 
31.4 | 
32.5 | 
24.0 | 
56.9 | 
52.3 | 
23.0 | 
44.0 | 
24.2 | 
21.7 | 
46.2 | 
53.1 | 
38.0 | 
33.8 | 
40.1 | 
37.4 | 
32.9 | 
37.6 | 
28.2 | 
40.1 | 
48.4 | 
37.8 | 
37.1 | 
31.7 | 
36.5 | 
49.1 | 
38.9 | 
49.9 | 
23.2 | 
29.3 | 
19.0 | 
29.2 | 
44.0 | 
15.5 | 
47.5 | 
33.6 | 
32.1 | 
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+ + +- 
I Target ID | Coord I | Coord J Area (m2) Av Lum Std Dev Lum 

|        00059 31.7 47.1 
|        00060 7.8 60.8 
[        00061 24.8 29.4 
t        00062 124.7 40.8 

00063 111.3 31.9 
00064 47.0 231.2 
00065 24.9 226.1 
00066 248.5 99.6 
00067 16.3 82.5 
00068 18.2 132.6 
00069 26.6 134.8   | 
00070 244.1 315.2   | 
00071 9.5 225.2   | 
00072 106.7 201.3   | 
00073 182.9 258.6   | 
00074 95.0 222.6   | 
00075 99.3 216.8   | 

150 135.5 
74 92.9 

299 72.0 
122 59.5 

38 77.6 
154 192.8 

84 107.1 
82 45.5 

117 109.1 
46 46.6 

138 56.8 
198 71.6 

57 92.1 
120 78.5 

52 50.3 
36 41.3 
89 98.7 

35.2 
30.3 
44.3 
14.9 
20.6 
38.0 
43.5 
17.8 
34.1 
24. 
18. 
33. 
36. 
32.1 
22.2 
24.7 
37.5 

.2 

.3 

.0 

.2 

Table 4: Target table automatically produced by program 
Figure 37. I and J coordinates define the center of mass of 
the area in squared meters, the average pixel luminance, and 
pixel luminance. 

Target ID refers to labels in 
the cluster, other entries are 
the standard deviation of the 

After a field survey, the following facts were established (see Figure 38): 

(i) Of the 75 targets found, 10 did not correspond to any kind of building, building 

cluster, or housing area (false positives). These are given in Table 5: 

Target ID Description 

1 Tree surrounded by squared path on the corner of Encina Ave. 

30 U-Haul parking lot, full of trucks parked in parallel at time of survey. 

37 Del Monte Elementary School playground (rectangular, bare ground). 

50 Section of road division lot with trees (boulevard) at Del Monte Ave. 

51 Section of road division lot with trees (boulevard) at Del Monte Ave. 

52 Section of road division lot with trees (boulevard) at Del Monte Ave. 

64 Parking lot with bare ground terrain. 

65 Square shaped bare ground terrain partially surrounded by fence. 

66 Private drive delimited by fence. 

71 Square shaped bare ground terrain. 
Table 5: False positive building detection. 
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(ii) Among the remaining 65 patterns correctly identified, those which are not 

housing areas are listed in Table 6: 

Target ID 

10 

12 

16 

17 

18 

19 

20 

21 

22 

23 

24 

26 

27 

28 

29 

31 

32 

33 

35 

36 

47 

Description 

Annex of Willie's & Fraley Auto Repair (2232 Del Monte Ave.) 

Dairy Producers Office 

Advantage Auto Repair & Muffler 

Tileco Ceramic (2110B Del Monte Ave.) 

Greg Bean Auto Servicing (2200 Del Monte Ave.) 

Ewing Irrigation Products 

Store USA main building 

McCuhe Audio-Visual 

Allied Storage Warehouse 

Wilson's Plumbing And Heating 

C & C Repair 

Miller Moving & Storage Co. (on Dela Vina Ave.) 

Miller Moving & Storage Co. (on Ramona Ave.) 

Allied Van Lines 

Willie's / Fraley Auto Repair 

Redwood Heating 

Hubbard Plumbing 

Moving & Storage Wermuth & Cahoon 

Foreign Affairs office 

Old garage for Allied (now demolished, but present at time of photo) 

Aquarius Dive Shop 

Del Monte Elementary School Building 

Monterey Ironworks Annex 

Del Monte Elementary School Building 

Del Monte Glass 

Mans (2101 Del Monte Ave.) 

62 



56 

72 

75 

United Rentals 

Dairy Producers Office 

Dairy Producers Office 

Table 6: Commercial and industrial buildings correctly detected. 

(iii) Some major non-residential buildings were also missed (false negatives). 

They are listed in Table 7 below: 

Target ID 

m 

Description 

Skate Arena 

Monterey Ironworks main building 

Linda Motel 

Natale's Auto Service 

Del Monte Elementary School Building 

Del Monte Elementary School Building 

Del Monte Elementary School Building 

Del Monte Elementary School Building 

Monterey Gymnastics (220 Dela Vina Ave.) 

Storage USA Annex 

Dairy Producers wooden roof open storage 

Conte's Auto Repair 

ABC Glass 

City Community Chapel 

Table 7: False positive building detection. 

(iv) The dashed area on the northeast block delimited by Del Monte Ave. and 

Ramona Ave. suffered recent remodeling; old constructions were demolished and newer 

buildings were erected since the year of the photo (1993). So all events inside that area 

were ignored. An area at south of US 1 was also ignored because of the difficulty of 

access. 
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In Figure 38, building clusters are plotted with a color schema for easy 
visualization of the results, in a similar way to that used in [Ref. 24]. Those identified 
with letters and painted in blue are buildings missed. Those in red are those erroneously 

recognized (false alarms). Areas in green are correctly recognized buildings, building 
clusters or other housing. 

100 

150- 

200- 
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250 300 

Figure 38: Reference information for the scene. 

Summarizing, from the 75 patterns recognized as buildings or housing structures, 
only 65 were actually buildings, while 14 other relevant buildings (non-residential) were 
missed. At the marginal resolution of the image, false negative recognition of small 

buildings such as residential houses should not be penalized. This gives a rough estimate 
of false positive recognition ratio of (75 - 65) / 75 = 13% and a false negative recognition 
ratio of 14/(65+ 14) = 18%. 
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APPENDIX B. PROGRAM LISTING 

function [BuildingCluster, PLCluster, totalElapsedTime, numOps] = ... 
find_building_clusters(FilePath, FileName, pixelLength,... 
logResultsFlag) 

% 
%  Usage: 
% 
%  [BuildingCluster, PLCluster, totalElapsedTime, numOps] = ... 
%    find_building_clusters(FilePath, FileName, pixelLength, logResultsFlag) 
% 
% 
% Description: 
% 
% Finds probable building clusters in an orthorectified aerial 
% image given by the gray scale TIFF file called 'FileName'. 
% 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS. % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% %   ' 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'find_building_clusters.m' 
% (Main function call for the building finding routine) 

FlopsO = flops; 

TimeO = clock; 

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable 
createCornerLookUp 

global logResults 
logResults = logResultsFlag,- 

global BTotal 

% limit value of differencial angle to be considered paralel/orthogonal: 
global cosParalelLimit cosParalelLimitForEquiv limitDist 
global cosColinearLimitl cosColinearLimit2 tanLimitForMerging SINMAX1 SINMAX2 

global WorkingDirectory 

% initialization of constants 
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cosParalelLimit = cos(5.5*pi/180);       % +/-5.5 degrees 
cosParalelLimitForEquiv = cos(15*pi/180); % +/-10 degrees 
tanLimitForMerging = tan(20*pi/180); 
limitDist = 2; 

% define 1 to plot contours, 0 not to plot. 
showContours=l ,- 

% set working directory 
WorkingDirectory = FilePath; 

% read image TIFF file 
A = imread([FilePath FileName] ,'tif ) ; 

Phasel   % Edge extraction from image:  B{} <  edge(A) 

Phasen  % Extract primitive lines from e dges: PL <  primitives(B{}) 
% load ( [FileName ' . Phasen .mat' ] ) ; 

PhasellA % Cluster primitive lines:  PLCluster <  PL 
% load([FileName '.PhasellA.mat']); 

for PLClusterNumber=l:length(PLCluster), 
PL=PLCluster{PLClusterNumber}; 

Phaselll % Enhance primitive lines: PL <  enhanced PL 

PLCluster{PLClusterNumber} = MergedPL; 
end 

figure(8) 

plotwithlines(A,PLCluster,mod([1:size(Clusterization,2)],2)+1,colors); 

numBuildingsInCluster = zeros(1,length(PLCluster)); 
disp('  
'); 
disp( ['Begining of building search phase for image in: "' FileName '"']) 

for PLClusterNumber=length(PLCluster):-l:l, 
PL=PLCluster{PLClusterNumber}; 

% PhaselVA: Find cycles in PL graph 
[PL, loop, PLinLoop, DecomposedPLLoops, Indexes,... 

contourLoop, supportedFraction, shaperErr, errMax, IJCoordinates] = 
PhaseIVA(A, PL, logResults, FileName, PLClusterNumber); 

PLCluster{PLClusterNumber}=PL; 

numBuildingsInCluster(PLClusterNumber)=length(contourLoop); 

if numBuildingsInCluster(PLClusterNumber) > 0 
title( ['Cluster ' int2str(PLClusterNumber) ' of ' 

int2str(length(PLCluster))... 
': ' int2str(length(contourLoop)) ' Building candidates found.']) 

% paused) 
end 

for bNum=l:length(contourLoop), 
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CandidatePolygon{PLClusterNumber,bNum} = contourLoop{bNum}; 
shapeError{PLClusterNumber,bNum} = shaperErr{bNum}; 
shapeMaxError{PLClus terNumber,bNum} = errMax{bNum}; 
sFrac{PLClusterNumber,bNum} = supportedFraction{bNum}; 
PLinPolygon{PLClusterNumber,bNum} = PLinLoop{Indexes{bNum}}; 
cycleSummary{PLClusterNumber,bNum}=loop{Indexes{bNum} }; 

end 
end 

debugMode=0; 
PlotWithImageInBackground=0; 
PlotContourOnly=l; 

[Building, figHandle] = ... 
selectbuildingcandidates(A, PlotWithlmagelnBackground, PlotContourOnly, 

CandidatePolygon, PLinPolygon, cycleSummary, shapeError, 
shapeMaxError,... 

sFrac, numBuildingsInCluster, size(A), debugMode); 

paused) 
Building 

if logResults 
hgsave(gcf, [FileName '.Buildings.Fig'3); 
save([FileName '.PhaselVA.mat' ] ) 
% print 

end 

% load( [FileName ' .PhaselVA.mat' ]) ,- 

figure(8) 

% Analyze building clusters 
imageBackground = 1 ; 
numberPlot = 1 ,- 

[NumberOfBuildingClusters, BuildingCluster] = ... 
PhaseVA(A, imageBackground, Building, PLCluster,... 
pixelLength, FileName, 0, numberPlot) 

% measure performance 

Flops1 = flops; 

Timel = clock; 

totalElapsedTime = etime(Timel, TimeO); 
numOps = Flopsl - FlopsO; 

disp(['Total elapsed time = ' num2str(totalElapsedTime) 's']) 
disp([ '(' num2str(numOps) ' float point ops @ ' ... 

num2str((numOps)/(totalElapsedTime*1000)) ' kflops )' ] ) 

% End of file 'find_building_clusters.m' 
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function PL = bestline(r,   rCenter); 
% 
% function PL = bestline(r, Center); 
% 
% PL = [theta, d, base, LimitI, LimitJ]' 
% 
% Description: Computes the best line passing through the on-pixels 
% in binary image r, minimizing the sum of the squared 
% distances from pixels to the line. 'Center' is the 
% point used as a reference for computing 'd' and the 
% base point 'base'. 'ELRatio' is a measure of the 
% quality of the adjustment. 

% ===========================% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
*  % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'bestline.m' 

% find the non zero pixels: 
[ISet, JSet] = ind2sub(size(r),find(r>0)) ; 
P=[ISet JSet]; 

% compute n number of non zero pixels 
n=size(P,l); 

% Avoid integer center coordinates guarantee A is not 0 
Center = rCenter - sqrt(2)/2; 

% find distance of each pixel to Center 
Disp=P-ones(n,1)*Center; 
D=sqrt(sum((Disp.*Disp)') ) ' ; 
% find the sin & cos of each pixel 
SinP=Disp(:,2)./D; 
CosP=Disp(:,1)./D; 

ThetaP=atan2(SinP,CosP); 
% Angle in degrees = 180*ThetaP/pi 

% consider the oriented distance to each pixel 
D=-D.*sign(Disp(:,1).*CosP + Disp(:,2).*SinP); 

% repeat for rCenter 
% find distance of each pixel to Center 
ActualDisp=P-ones(n,l)*rCenter; 
ActualD=sqrt(sum((ActualDisp.*ActualDisp) ' ) ) ' ; 
% find the sin & cos of each pixel 
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ActualSinP=ActualDisp(:,2)./D; 
ActualCosP=ActualDisp(:,1)./D; 
ActualThetaP=atan2(ActualSinP,ActualCosP); 
% consider the oriented distance to each pixel 
ActualD=-ActualD.*sign(ActualDisp(:,1).*ActualCosP + 
ActualDisp(:,2).*ActualSinP); 

% compute the best tangent of the best angle 
% by solving a degree two equation A.t2+B.t+C=0 
DCos=D.*CosP; 
DSin=D.*SinP; 
nDSinCos=n*sum(DCos.*SinP); 
A=nDSinCos-sum(sum(DSin*CosP') ) ; 
B=n*sum(D.*(CosP.*CosP - SinP.*SinP)) - sum(sum(DCos*CosP' - DSin*SinP')) 
C=sum(sum(DCos*SinP'))-nDSinCos; 
if A<0 

A=-A; 
B=-B 
C=-C 

end 

SDelta=sqrt(B*B-4*A*C); 
theta=[atan2(-B-SDelta,2*A) atan2(-B+SDelta,2*A) ]' ; 
% 180*theta/pi 

d=zeros(2,1) ; 
for k=l:2, 

d(k)=sum(ActualD.*cos(theta(k) - ActualThetaP))/n; 
end 

% two hypotesis are to be tested: 
% (theta=theta(l) andd=d(D)  or (theta=theta(2) and d=d(2)) 
error=zeros(2,1) ; 
e=zeros(n,2); 
e(: ,D=ActualD.*cos(theta(l)-ActualThetaP) - d(l) ; 
error(l)=e(:,l)'*e(:,D; 
e(:,2)=ActualD.*cos(theta(2)-ActualThetaP) - d(2); 
error(2)=e(:,2)-*e(:,2); 

[eSort, elndex]=sort(error); 
kMin=eIndex(l); 
theta=theta(kMin); 
d=d(kMin); 

uTheta = [-sin(theta) cos(theta)]; 
base  = rCenter - d*[cos(theta) sin(theta)]; 

% compute de projection of the points on the best line 
Y=-ActualDisp(:,1); 
X=ActualDisp(:,2); 
YSinXCos=Y*sin(theta) + X*cos(theta); 
XProj=cos(theta)*YSinXCos - d*sin(theta); 
YProj=sin(theta)*YSinXCos + d*cos(theta); 
LimitX=[min(XProj) max(XProj)]; 
LimitY=[min(YProj) max(YProj)]; 
if theta<0 

LimitY=fliplr(LimitY); 
end 
LimitI=rCenter(1)-LimitY; 
LimitJ=rCenter(2)+LimitX; 
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iProj =rCenter(1)-YProj; 
j Proj =rCenter(2)+XProj; 

PL = [theta d base LimitI LimitJ]'; 

if abs(theta)<pi/4 
pattern=sign(e(:,kMin)); 

else 
[ISetSorted, IndexSortingI]=sort(ISet) ; 
pattern=sign(e(IndexSortingI,kMin)); 

end 

E=max(abs(e(:,kMin))) ; 
ELRatio=E/lengthOfPL(PL) ; 

% if debugging, uncomment the line below: 
% plotAdjustment(r,E,ELRatio,LimitI,LimitJ,ISet,JSet, rCenter, iProj,jProj) ; 

function plotAdjustment(r, E, ELRatio, LimitI, LimitJ, ISet, JSet,... 
Center, iProj, jProj) 

% 
% plots the resulting line segment 
% 
%subplot(122) 

elf 
% r2 = uint8(3*double(r)+16*(double(auxSeg)-double(r))+double(bigMask)); 
% imagesc(r2,[0 20]) 
imagesc(r,[0 2]) 
colormap(l-gray) 
axis image 

% axis([min(JSet)-0.5 max(JSet)+0.5 min(ISet)-0.5 max(ISet)+0.5]) 
% axis([min(JSet+l)-1.5 max(JSet+l)+1.5 min(ISet+1)-1.5 max(ISet+l)+1.5]) 
hold on 
h=line(LimitJ,LimitI); 
set(h,'Color',[0 0 0]); 
set(h,'LineWidth',2); 

for k=l:length(ISet), 
h=line([JSet(k) jProj(k)],[ISet(k) iProj(k)]); 
set(h,'Color',[0 0 0]); 
set(h,'LineWidth',1); 

end 

xlabel(['PL: PI = (' num2str(LimitI(1)) ', ' num2str(LimitJ(l))... 
'),   P2 = (' num2str(LimitI(2)) ', ' num2str(LimitJ(2)) ')']) 

% End of file 'bestline.m' 
=% 
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function b=fillStraightLookUpFun(x) 

% Description: Computes lookup table for use in detecting special 
% points of the edge image 
% 14 7 
% x 2 5 8 
%    3 6 9 

% 
% COMPUTER-AIDED RECOGNITION OF 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS 
% 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe 
% 
% Department of Computer Science 
% Naval Postgraduate School, September 1999 
% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'bifurcLookUpFun.m' 

%- 

% 'Y' configuration 
pl=[0 1 0; 0 1 0;  10 1]; 
p2=rot90(pl) 
p3=rot?0(p2) 
p4=rot90(p3) 

% 'Y+' configuration 
ql=[0 1 1; 0 1 0;  1 0 1]; 
q2=rot90(ql) 
q3=rot90(q2) 
q4=rot90(q3) 

% 'Y++' configuration 
rl=[l 1 1; 0 1 0;  10 1]; 
r2=rot90(rl) 
r3=rot90(r2) 
r4=rot90(r3) 

% 'Y45' configuration 
Sl=[l 0 0; 0 1 1;  0 10]; 
s2=rot90(si) 
s3=rot90(s2) 
s4=rot90(s3) 

% 'T45' configuration 
wl=[l 0 0; 0 1 0;  10 1] 
w2=rot90(wl) 
w3=rot90(w2) 
w4=rot90(w3) 

% 'T' configuration 
zl=[l 1 1; 0 1 0; 0 10]; 
z2=rot90(wl); 

71 



z3=rot90(w2); 
z4=rot90(w3); 

%   'X'   configuration 
tl=[0   1   0;    1   1   1;   0   10]; 
t2=[l   0   1;   0   1   0;   10   1]; 

b=(sum(x(:)==pl(:))==9)|(sum(x(:)==p2(:))==9)|(sum(x(:)==p3(:))==9)I(sum(x(:)== 
p4(:))==9)I... ' 

(sum(x(: 
(:))==9) 

(sum(x(: 
(:))==9) 

(sum(x(: 
(:))==9) 

(suro(x(: 
(:))==9) 

(sum(x(: 
(:))==9) 

(sum(x 

==ql(:))==9) 

==rl(:))==9) 

==sl(:))==9) 

==wl(:))==9) 

==zl(:))==9) 

(sum(x(:)==q2(:))==9) 

(sum(x(:)==r2(:))==9) 

(sum(x(:)==s2(:)>==9) 

(sum(x(:)==w2(:))==9) 

(sum(x(:)==z2(:))==9) 

(sum(x(:)==q3(:))==9) 

(sum(x(:)==r3(:))==9) 

(sum(x(:)==s3(:))==9) 

(sum(x(:)==w3(:))==9) 

(sum(x(:)==z3(:))==9) 

(sum(x(:)==q4 

(sum(x(:)==r4 

(sum(x(:)==s4 

(sum(x(:)==w4 

(sum(x(:)==z4 

:)==tl(:))==9)|(sum(x(:)==t2(:))==9); 

%= 
%  End of  file   'bifurcLookUpFun.m.i 

=% 
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function   [PLCluster,   Clusterization,   resolutionTouoh,   cornerTouch]=... 
breakPL(PL) 

% 
% [PLCluster, Clusterization, resolutionTouch, cornerTouch] =... 
%   breakPL(PL) 
% 
% Description: Breaks the set of primitive line segments into 
% geografically unrelated clusters. 
% 
% PL column: [theta d base LimitI LimitJ]' 

%======= =========== =========================================% 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=============================================== ==============% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'breakPL.m' 

n=size(PL,2); 
resSeparationSquared = 8;  % 2"2 + 1A2 % =(2*sqrt(2))A2 
resSeparation = sqrt(resSeparationSquared) ; 

zerosnn=uint8(zeros(n,n)); 

Len=lengthOfPL(PL); 
% GeoMedLenMatrix=sqrt((Len'*ones(l,n)) .* (ones(n,1)*Len)); 

% angleRelated=zerosnn; 
perpRelated=zerosnn; 
HALFANGLEMAXl=pi/8; 
ComparisonAnglel=pi/4-HALFANGLEMAXl; 
HALFANGLEMAX2=45*pi/(2*180); % 15 degrees / 2 
ComparisonAngle2=pi/2-HALFANGLEMAX2; 
% HALFANGLEMAX3=15*pi/(2*180); % 15 degrees / 2 
% ComparisonAngle3=pi/2-HALFANGLEMAX3; 

thetas=PL(l, :) ,- 
%DeltaThetaMatrix = thetas'*ones(l,n)-ones(n,1)*thetas; 
%angleRelated(find(abs(mod(DeltaThetaMatrix,pi/2)-pi/4)>ComparisonAnglel))=1; 
%angleRelated(find(eye(n)))=0; % exclude self 
%perpRelated(find(abs(mod(DeltaThetaMatrix-pi/2,pi)-pi/2)>ComparisonAngle2))=1; 

% To save memory, do it line-by-line: 
for i=l:n, 

DeltaThetaMatrix = thetas-thetas(i); 
perpRelated(i,find(abs(mod(DeltaThetaMatrix-pi/2,pi)- 

pi/2)>ComparisonAngle2))=1; 
end 
clear DeltaThetaMatrix 
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[DummyDmin, DummyBestPair, dll] = . . . 
distBetweenPoints(PL([5 7],:),PL([5 7],:)),■ 

dll(find(eye(n)))=Inf; 
% touchesll = find (dll <= GeoMedLenMatrix); 
resTouchesll = find(dll <= resSeparationSquared); 
dll(find(~perpRelated))=Inf; 
[minDistToAngleRelatedByColumn,RowIndexesWhereFound]=min(dll); 

ColumnsWhereFound=find (minDistToAngleRelatedByColumn < 
Len(RowindexesWhereFound).*Len ); 

resll=zerosnn; 
resll(resTouchesll)=1; 

cornerTouchll= [ ] ; 
for c=l:length(ColumnsWhereFound), 

% test if both vertices are "alone", that is, not touching other PL 
if (sum(resll(:,ColumnsWhereFound(c)))==0)&... 

(sum(resll(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0) 
% if it is, then iclude it into cornerTouch class 
cornerTouchll = [cornerTouchll... 

sub2ind([n 

n],RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c))']; 
end 

end 

clear resll dll 

[DummyDmin, DummyBestPair, dl2] = ... 
distBetweenPoints(PL([5 7],:),PL([6 8],:)); 

% touchesl2 = find(dl2 <= GeoMedLenMatrix); 
resTouchesl2 = find(dl2 <= resSeparationSquared); 
dl2(find(~perpRelated))=Inf; 
[minDistToAngleRelatedByColumn,RowIndexesWhereFound] =min(dl2) ,- 
%minDistToAngleRelatedByColumn(124) 
%RowIndexesWhereFound(124) 
%Len(RowIndexesWhereFound(124))*Len(124) 

ColumnsWhereFound=find(minDistToAngleRelatedByColumn < 
Len (RowIndexesWhereFound) . *Len ) ,- 

resl2=zerosnn; 
resl2(resTouchesl2)=l; . 

cornerTouchl2=[]; 
for c=l:length(ColumnsWhereFound), 

% test if both vertices are "alone", that is, not touching other PL 
if (sum(resl2(:,ColumnsWhereFound(c)))==0)&... 

(sum(resl2(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0) 
% if it is, then iclude it into cornerTouch class 
cornerTouchl2 = [cornerTouchl2... 

sub2ind([n 
n],RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c))']; 

end 
end 

clear resl2 dl2 

[DummyDmin, DummyBestPair, d21] = ... 
distBetweenPoints(PL([6 8],:),PL([5 7],:)); 
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% touches21 = find(d21 <= GeoMedLenMatrix); 
resTouches21 = find(d21 <= resSeparationSquared); 
d21(find(~perpRelated))=Inf; 

[minDistToAngleRelatedByColuirm,RowIndexesWhereFound]=min(d21); 

ColumnsWhereFound=find(minDistToAngleRelatedByColumn < 
Len(RowIndexesWhereFound).*Len ); 

res21=zerosnn; 
res21(resTouches21)=l; 

cornerTouch21=[]; 
for c=l:length(ColumnsWhereFound), 

% test if both vertices are "alone", that is, not touching other PL 
if (sum(res21(:,ColumnsWhereFound(c)))==0)&... 

(sum(res21(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0) 
% if it is, then iclude it into cornerTouch class 
cornerTouch21 = [cornerTouch21... 

sub2ind([n 
n] ,RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c)) ' ] ; 

end 
end 

clear res21 d21 

[DummyDmin, DummyBestPair, d22] = ... 
distBetweenPoints(PL([6 8],:),PL([6 8],:)); 

% touches22 = find(d22 <= GeoMedLenMatrix); 
resTouches22 = find(d22 <= resSeparationSquared); 
d22(find(-perpRelated))=Inf; 

[minDistToAngleRelatedByColumn,RowIndexesWhereFound]=min(d22); 

ColumnsWhereFound=find(minDistToAngleRelatedByColumn < 
Len(RowIndexesWhereFound).*Len ); 

res22=zerosnn; 
res22(resTouches22)=1; 

cornerTouch22=[]; 
for c=l:length(ColumnsWhereFound), 

% test if both vertices are "alone", that is, not touching other PL 
if (sum(res22(:,ColumnsWhereFound(c)))==0)&... 

(sum(res22(RowIndexesWhereFound(ColumnsWhereFound(c)),:))==0) 
% if it is, then iclude it into cornerTouch class 
cornerTouch22 = [comerTouch22 . . . 

sub2ind([n 
n]»RowIndexesWhereFound(ColumnsWhereFound(c)),ColumnsWhereFound(c)) ' ] ; 

end 
end 

clear res22 d22 

cornerTouch = 
union(union(cornerTouchll,cornerTouchl2),union(comerTouch21,cornerTouch22)); 
cornerRelated=zerosnn ,- 
cornerRelated(cornerTouch)=1; 

resll=zerosnn; 
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resl2=zerosnn; 
res21=zerosnn; 
res22=zerosnn; 
resll(resTouchesll)=1; 
resl2(resTouchesl2)=1; 
res21(resTouches21)=1; 
res22(resTouches22)=1; 
resolutionTouch = resll|resl2|res21|res22; 
clear resll resl2 res21 res22 

D=(resolutionTouch)|(cornerRelated); % (obtuseRelated & resolutionTouch); % 

p=etree(double(D)); 
ElimVector=p; 

k=0; 
PLCluster={}; 
Clusterization={}; 
Cluster=zeros(size(p)); 

i=l; j=l; 
for i=l:n, 

if p(i)-=0, 
k=k+l; 
PLCluster{k}=PL(:,i); 
Clusterization{k}=[i]; 
% Cluster(i)=k; 
j = i; 
while p(j)>0, 

PLCluster{k}=[PLCluster{k} PL(:,p(j))]; 
Clusterization{k}=[Clusterization{k} p(j)]; 
Cluster(j)=k,• 
j01d=j; 
J=P(J); 
p(jOld)=0; 

end 
% if p(j) clusterized before, merge the two clusters: 
if Cluster(j)>0 

% exclude common before merging 
currentCount=length(Clusterization{k}); 
PLCluster{k}=PLCluster{k}(:,1:currentCount-1); 
Clusterization{k}=Clusterization{k}(1:currentCount-l); 

PLCluster{Cluster(j)}=[PLCluster{Cluster(j)} PLCluster{k}] 
PLCluster=PLCluster(l:k-l); 
Clusterization{Cluster(j)}=... 

[Clusterization{Cluster(j)} Clusterization{k}]; 
Cluster (Clusterization{k} ) =Cluster (j ) ,- 
Clusterization=Clusterization(l:k-l); 
k=k-l; % backup cluster counter 

else 
Cluster(j)=k; 

end 
end 

end 

% End of file 'breakPL.m' 
=====% 
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function [MergedPL, Colinearlndexes, newMergedLines, ... 
NuniberOf Clusters] = colinear(PL, A, cosColinearLimit, SXNMAX) 

% 
% Description: Fuses colinar primitive segment lines that 
% are close to each other. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'colinear.m' 

n=size(PL,2); 

% limit value of differencial angle to be considered colinear: 
% global cosColinearLimit 

% limit value of vertex distance to be considered touching: 
global limitDist; 

thetas=PL(l,:); 
cosDiffThetaInBetweenPL=... 

abs(triu((cos(triu(thetas'*ones(1,size(PL,2))... 
-ones(size(PL,2),1)*thetas,1))),1)); 

distanceParameters=PL(2, :) ; 
diffProjToCenter= abs(triu(distanceParameters'*ones(1,size(PL,2))... 

-ones(size(PL,2),1)*distanceParameters)); 

MergedPL=PL; 
newMergedLines=[]; 

% detect pairs of primitive lines that are approximately paralel 
PairsOfParalelPL=find(cosDiffThetaInBetweenPL > cosColinearLimit); 
disp([int2str(length(Pairs0fParalelPL)) '/' int2str((n*n -n)/2)... 

' (' num2str(round(1000*length(PairsOfParalelPL)/((n*n -n)12))/10)... 
'%) pairs of paralel primitive lines found.']); 

ColinearTouchingPairs=[]; 
if length(PairsOfParalelPL)>0 

PossiblePairs = PairsOfParalelPL(find(diffProjToCenter(PairsOfParalelPL) < 
10)); 

disp([int2str(length(PossiblePairs)) '/' 
int2str(length(PairsOfParalelPL))... 

' (' 
num2str(round(1000*length(PossiblePairs)/(length(PairsOfParalelPL)))/10)... 

'%) pairs of possible primitive lines found.']); 
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% PairsOfParalelPL = PossiblePairs; % these are paralel and not too far 
(perp.) 

if length(PossiblePairs)>0 
[ColinearTouchingPairs,ColinearButNotNecessarilyTouchingPairs]... 

=findTouchingPairs(A, PL, PossiblePairs, n, limitDist, SINMAX); 
% 

ColinearTouchingPairs=intersect(PairsOfParalelPL,favorablyClosePairs(PL,limitDi 
St)); 

disp([int2str(length(ColinearTouchingPairs)) '/' 
int2str(length(PossiblePairs))... 

' (' 
num2str(round(1000*length(ColinearTouchingPairs)/(length(PossiblePairs)))/10).. 

'%) pairs of touching primitive lines found.']); 
end 

end 

ColinearIndexes=[]; 
if length(ColinearTouchingPairs)>0 

[LI, L2] = ind2sub([n n].ColinearTouchingPairs); 
selectedLines=zeros (l,n) ,- 
selectedLines(LI)=1; 
selectedLines (L2) =1 ,• 
ColinearIndexes=find(selectedLines); 

% cluster colinear pairs that touch each other 
S=clusterColinearTouchingPairs(ColinearTouchingPairs,n); 
NumberOfClusters=length(S) ; 
disp(['Num of Clusters Found: ' int2str (NumberOfClusters) ] ) ,- 

unchangedList=ones(l,n); 
for i=l:NumberOfClusters, 

% disp(['Cluster #' int2str(i) ' = [' int2str(S{i}) ']']) 
[LI, L2] = ind2sub([n n],S{i}); 

selectedLines=zeros(1,n); 
selectedLines (LI) =1 ,- 
selectedLines(L2)=1; 
indexesOfLinesToBeMerged=find(selectedLines); 
ResultingLine=mergePrimitiveLines(PL(:,indexesOfLinesToBeMerged)); 
sizeOfThisCluster=length(indexesOfLinesToBeMerged); 
thetaCluster = PL (1, indexesOfLinesToBeMerged) ,- 

% only merge PL's if this cluster is fully connected 
% in the ColinearButNotNecessarilyTouchingPairs set 
AllConnections=[]; 
for cl=l:length(LI), 

for c2=l:length(L2), 
if Ll(cl) < L2(c2) 

AllConnections=[AllConnections sub2ind([n n],LI(cl),L2(c2))]; 
end 

end 
end 

unchangedList(indexesOfLinesToBeMerged)=0; 
newMergedLines= [newMergedLines ResultingLine] ,- 

end 
disp([int2str(length(find(unchangedList))) ' PL remain unchanged.']); 
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disp([int2str(size(newMergedLines,2)) ' merged PL replaced the clusters.']); 

MergedPL=[PL(:,find(unchangedList)) newMergedLines]; 
else 

NumberOfClusters=0; 
end % if length(ColinearTouchingPairs)>0 

% % 
function b=LineInCoinmon(s,t,n) 
% 
[LI, L2] = ind2sub([n n],[s t]) ; 
b=(Ll(l)==Ll(2))|<L1(1)==L2(2))|(LI(2)==L2(1))|<L2(1)==L2(2)); 

% _ % 
function ResultingPL=mergePrimitiveLines(PL) 
% 
% pixel MSE version based on function 'bestline' 
% 
n=size(PL,2); 
if isempty(PL) 

ResultingPL=PL; 
else 

theta=PL(l,l) ; 
d=PL(2,l); 
base=PL(3:4,l) ; 
Center = base' + d*[cos(theta) sin(theta)]; 
r=uint8(zeros(round(2*Center) + 1)); 

for k=l:size(PL,2) , 
theta=PL(l,k) ; 
d=PL(2,k); 
maxl=ceil(max(max(PL(5:6, : ) ) ) ) 
maxJ=ceil(max(max(PL(7:8, : )) ) ) 
LineLength=lengthOfPL(PL(:,k)) 
for len=0:0.2:LineLength, 
pointNow=round([PL(5,k) PL(7,k)] + len*[-sin(theta) cos(theta)]); 

if (pointNow(l)<=maxI)&(pointNow(2)<=maxJ)&(l<=min(pointNow)) 
r(pointNow(l),pointNow(2))=1; 

end 
end 

end 
ResultingPL = bestline(r,Center); 
% =[theta d based) base(2) Limitl(l) Limitl(2) LimitJ(l) LimitJ(2)]'; 

end 

% % 
function S=margeClustersHarked(OldCluster,clustersToMerge); 
% merge clusters marked: 
% Eg.: From {S{1} S{2} S{3} S{4} S{5} S{6} S{7}}, marked [2 4 5]: 
%      ==>  S{1}      S{3) S{6} S{7} SNew, 
% SNew = S{2} U S{4} U S{5} 
S={}; 
i=l; 
mergedCluster=[] ; 
for j=l:length(01dCluster) , 

if isempty(find(clustersToMerge==j)) 
S{i}=01dCluster{j}; • 
i=i+l; 

else 
mergedCluster=[mergedCluster 01dCluster{j}]; 
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end 
end 
if ~isempty(mergedCluster) 

S{i}=sort(mergedCluster); 
end 

%.-___% 

function S=clusterColinearTouchingPairs(ColinearTouchingPairs,n) 
% cluster colinear pairs that touch each other 

S{l}=ColinearTouchingPairs(l); % clusters: S{1}, S{2}, ... 
for k=2:length(ColinearTouchingPairs), 

included=0; 
clustersToMerge=[]; 
i=l; 

while i<=length(S), % test if pertain to any cluster 
j=l; 
touchingInThisCluster=0; 
while j<=length(S{i})&not(touchingInThisCluster), 

if LineInCommon(ColinearTouchingPairs(k),S{i}(j),n) 
touchingInThisCluster=l; 
% mark to merge the clusters 
clustersToMerge = [clustersToMerge i]; 
if not(included) % 

S{i} = [S{i} ColinearTouchingPairs (k) ] ,- 
included=l; 

end 
end % if Touching(ColinearTouchingPairs(k),S{i}(j)) 

j=j+l; 
end % while j<=length(S{i})&not(touchinglnThisCluster) 
i=i+l; 

end % i<=length(S) 

if not(included) 
S{length(S)+l}=ColinearTouchingPairs(k); 

else 

S=mergeClustersMarked(S,clustersToMerge); 
end % not(included) 

end % for k=2:length(ColinearTouchingPairs) 

%  % 

function [TouchxngPairs, ColinearButNotNecessarilyTouchingPairs]... 
=findTouchingPairs(A, PL, PairsOfParalelPL, n, limitDist, SINMAX) 

% 

% find pairs of aligned PL that are enough close to each other 
% by ONE of their extremities 

limitDist2=limitDist*limitDist; 
TouchingPairs=[]; 
ColinearButNotNecessarilyTouchingPairs=[]; 

[P, Q, LostPL] = pixelPL(PL,size(A)); 

for k=l:length(PairsOfParalelPL), 

% find lines LI, L2 
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[LI, L2] = ind2sub([n n],PairsOfParalelPL(k)); 

if ((Ll==35) & (L2==40)) 
flag=l; 

else 
flag=0; 

end 

% compute the pixels hit by the endpoints of LI and L2 
[iPl, jPl] = integerEndPoints(PL, LI, size(A)); 
[iP2, jP2] = integerEndPoints(PL, L2, size(A)); 

% dij = distance(LlPi, L2Pj) 
dll=sqrt((PL(5,Ll)-PL(5,L2))*(PL{5,Ll)-PL(5,L2)) + (PL(7,L1)- 

PL(7,L2))*(PL(7,L1)-PL(7,L2))); 
d22=sqrt((PL(6,Ll)-PL(6,L2))*(PL(6,Ll)-PL(6,L2)) + (PL(8,L1)- 

PL(8/L2))*(PL(8,L1)-PL(8,L2))); 
dl2=sgrt((PL(5,Ll)-PL(6,L2))*(PL(5,Ll)-PL(6,L2)) + (PL(7,L1)- 

PL(8,L2))*(PL(7,L1)-PL(8,L2))); 
d21=sqrt((PL(6,Ll)-PL(5,L2))*(PL(6,Ll)-PL(5,L2)) + (PL(8,L1)- 

PL(7,L2))*(PL(8,L1)-PL(7,L2>)); 
[dSort,sIndex]=sort([dll dl2 d22 d21]),- 
mind=dSort(1); 
% min=d(i,i) => d(j,j) should be max; 
% min=d(i,j) => d(j,i) should be max, i,j in {1,2} 
otherIndex=mod((slndex(l)-1)+2,4)+l; 

% compute which endpoint of LI and L2 are the ones "touching" each other 
Llg = floor((sIndex(l)-l)/2) + 1; 
L2g = 1 + ((slndex(l)==2)|(slndex(l)==3)); 

% find all other PL that have an endpoint in their neighborhood 
PLinNeighborhood = union(neighborPL(iPl(Llg), jPl(Llg), P, R),... 

neighborPL(iP2(L2g), jP2(L2g), P, R) ) ; 
OtherPLinNeighborhood = setdiff(PLinNeighborhood, [LI L2]); 

% only proceed with search if both conditions are met 
if (slndex(4)==otherIndex)&isempty(OtherPLinNeighborhood) 

% disp(num2str(100*k/length(PairsOfParalelPL))); 

% posOK=' Good position '; 

% hij = perpendicular distance(Lj'Pi, Lj ) 
hll = sigdistoline(PL([5 7],L2)',PL(:,L1)); % dist from L1P2 to LI 
h22 = sigdistoline(PL([6 8],L1)',PL(:,L2)); % dist from L1P2 to L2 
hl2 = sigdistoline(PL([5 7],L1)',PL(:,L2)); % dist from L1P1 to L2 
h21 = sigdistoline(PL([6 8],L2)',PL(:,L1)); % dist from L2P2 to LI 

Lenl=lengthOfPL(PL(:,LI)); 
Len2=length0fPL(PL(:,L2)); 

LlwithinL2=((hl2*h22 <= 0)|((max(abs([hll h22])) < limitDist)))&... 
%(Len2 > Lenl)))&... 

((max(abs([hl2/dll h22/d21])) < SINMAX)|... 
(max(abs([hl2/dl2 h22/d22])) < SINMAX)); 

L2withinLl=((hll*h21 <= 0)|((max(abs([hll h21])) < limitDist)))&... 
%(Lenl > Len2)))&... 

((max(abs([hll/dll h21/dl2])) < SINMAX)|... 
(max(abs([hll/d21 h21/d22])) < SINMAX)); 
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if LlwithinL2|L2withinLl 
ColinearButNotNecessarilyTouchingPairs... 

=[ColinearButNotNecessarilyTouchingPairs PairsOfParalelPL(k)] 
if mind < min([Lenl Len2]) 

TouchingPairs = [TouchingPairs PairsOfParalelPL(k)]; 
end % if (mind < min([Lenl Len2])) 

end % if LlwithinL2|L2withinLl 
else 

% posOK=' Bad position '; 
end % if (sIndex(4)==otherIndex) 

end % for k=l:length(PairsOfParalelPL), 

%- 

function pairs =  favorablyClosePairs(PL,limitDist) 

n=size(PL,2); 
limitDist2=limitDist*limitDist; 
% 
DeltallI=ones(n,l)*PL(5,: 
DeltallJ=ones(n,l)*PL(7,: 
Dll=DeltallI.*DeltallI + DeltallJ.»DeltallJ; 
% rem: sqrt(Dll(k,k)) = 0 

Delta22I=ones(n,l)*PL(6,: 
Delta22J=ones(n,l)*PL(8,: 
D22=Delta22I.*Delta22I + 
% rem: sqrt(D12(k,k)) = 0 

Deltal2I=ones(n,l)*PL(5,: 
Deltal2J=ones(n,1)*PL(7,: 

- PL(5,:)'*ones(l,n) ; 
PL(7,:)'*ones(l,n); 

Dll symetric 

- PL(6,:)'*ones(l,n); 
- PL(8,:)'*ones(l,n); 

Delta22J.*Delta22J; 
D22 symetric 

- PL(6,:)'*ones(l,n); 
- PL(8,:)'*ones(l,n); 

D12=Deltal2I.*Deltal2I + Deltal2J.*Deltal2J; 
% rem: sqrt(D12(k,k)) = ||L(k)|| D12 potentially not symetric 

D=zeros(n,n,4) ,- 
D(:,:,1)=D11; 
D(:,:,2)=D12; 
D(:,:,3)=D22; 
D(:, :,4)=D12'; 
[minD/minIndex]=min(D, [],3) ; 
[maxD,maxIndex]=max(D, [ ] , 3) ; 

otherIndex=mod((minlndex-l)+2,4)+1; 

pairs=intersect(find(minD<limitDist2),find((maxlndex-otherIndex)==0)); 

% % 

% Debug functions 

function debugShowCluster(S) 
% 
str='S = {' ; 
for k=l:length(S), 

str=[str ' [' int2str(S{k}) ']']; 
end 
disp([str ' }']) 

% End of file 'colinear.m' 
===% 

82 



function b=cornerLookUpFun(x) 
% 
%     14 7 
% x  2 5 8 
%     3 6 9 
% 
% Description: Computes lookup table for detection of corners 
% in the edge image. 
% 

%= 

%  COMPUTER-AIDED RECOGNITION OF 
%  MAN-MADE  STRUCTURES   IN AERIAL   PHOTOGRAPHS 
% 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe 
% 
% Department of Computer Science 
% Naval Postgraduate School, September 1999 
% 
%=============================================================== 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'cornerLookUpFun.m' 

=% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

=% 

%- 

b=(sum(x(: 
0]')==9) | . 

(sum(x (: 
0]')==9) |. 

(sum(x(: 
0]')==9) |. 

(sum(x(: 
1] ')==9); 

==[0   0   0 110 0   1   0]')==9)|(sum(x(:)==[0   10 110 0   0 

==[0   10 0   11 0   0   0]')==9)|(sum(x(:)==[0   0   0 0   11 0   1 

==[1   0   0 0   10 10   0]')==9)|(sum(x(:)==[l   0   1 0   10 0   0 

==[0   0   1 0  10 0  0  1]')==9)|(sum(x(:)==[0  0   0 0  10 10 

%  End of  file   'cornerLookUpFun.m' 
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function createCornerLooktJp 
% 
% Description: Creates in memory lookup tables for 
% detection of special points in edge image. 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999                     % 
%  % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'createCornerLookUp.m' 

% % 

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable 

CornerLookUpTable=makelut('cornerLookUpFun',3); 

BifurcLookUpTable=makelut('bifurcLookUpFun',3); 

FillStraightGapsLookUpTable=makelut('fillStraightLookUpFun',3); 

% End of file 'createCornerLookUp.m' 
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function [drain, bestPair, d] = distBetweenPoints(PA,PB) 
% 
% PA (2 x m) and PB (2 x n) are arrays of points. 
% 
% Description: Computes the distance between points of two sets 
% of points A & B. For every point Ai in A end Bj in 
% B, a distance d(ij) will be computed, dmin is the 
% minimum of these distances, obtained at the best 
% pair (i, j) . 
% 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'distBetweenPoints.m' 

% % 

m=size(PA,2); 
n=size(PB,2); 
d=zeros(m,n); 
d=inf; 

DI=PA(1,:)'*ones(l,n)-ones(m,l)*PB(l,:); 
DJ=PA(2,:)'*ones(l,n)-ones(m,l)*PB(2,:); 
% d=sqrt(DI.*DI + DJ.*DJ); 
d = DI.*DI + DJ.*DJ; 

[dClusterAtoEachB, Indexes] = min(d); 
[dmin, Jmin] = min(dClusterAtoEachB); 
dmin=sqrt(dmin); 
Imin = Indexes(Jmin); 
bestPair=[Imin Jmin]; 

%=================================================================% 
% End of file 'distBetweenPoints.m' 
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% 

function [E, CB, sei] = edgedetec(A) 
% 
% Description: enhanced edge detection & edge split points 
% 

% 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science • % 
% Naval Postgraduate School, September 1999 % 
%_   __ _ % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'edgedetec.m' 

global CornerLookUpTable BifurcLookUpTable FillStraightGapsLookUpTable 

MainContourAnalysis=0; 

if MainContourAnalysis 
[Contour, sei, threshold] = maincontours (A) ,- 

for k=l:length(threshold), 
% E=edge(A,'canny'); 

Aux=zeros(size(A)); 
Aux(find(A>=threshold(k)))=1; 

E{k}=edge(Aux,'canny'); 

% E=E|applylut(E,FillStraightGapsLookUpTable); 
E{k}=bwmorph(E{k}, 'clean') ,- 

Corners=applylut(E{k},CornerLookUpTable); 
Bifurcs=applylut(E{k},BifurcLookUpTable); 
CB{k}=Corners|Bifurcs; 

end 
else 

[E,th]=edge(A,'canny'); 
E=edge(A,'canny',[th(l) max([th(l) th(2)/2])]); 
E=bwmorph(E,'clean'); 
Corners=applylut(E,CornerLookUpTable); 
Bifurcs=applylut(E,BifurcLookUpTable); 
CB=Corners|Bifurcs; 
E={E}; 
CB={CB}; 
sel=l; 

end 

% End of file 'edgedetec.m' 
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function b=fillStraightLookUpFun(x) 
%     14 7 
% x  2 5 8 
%    3 6 9 
% 
% Description: Computes lookup table for finding special points 
% in the edge image. 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%============================================- ================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'fillStraightLookUpFun.m' 

% % 

pl=[0 0 0; 1 0 1;  0 0 0]; 
p2=rot90(pl); 

gl=[l 0 0; 0 0 0;  0 0 1]; 
q2=rot90(ql); 

b=(sum(x(:)==pl(:))==9)|(sum(x(:)==p2(:))==9)|... 
(sum(x(:)==ql(:))==9)|(sum(x<:)==q2(:))==9); 

% End of file 'fillStraightLookUpFun.m' 
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function IP, Indexes] = fPartition(S) 
% 
% function [P, Indexes] = fPartition(S) 
% 
% S={S(i)} 
% 

% Description:  Eliminates sets S(i) in the partion S, 
% if there is some S(j) contained in S(i) 

% =======================% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % I  % 
% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'fPartition.m' 

%- 

n=length(S); 
EmptyList=uint8(zeros(l,n)); 
DiscardMark=uint8(zeros(l,n)); 
SearchList=uint8(ones(l,n)); 
for k=l:n, 

if isempty(S{k}) 
SearchList(k)=0; 
EmptyList(k)=l; 

end 
end 

i=l; 
while i < n, 

if -EmptyList(i) 
j = 1; 
while j <= n, 
if SearchList(j)&(i~=j) 

if prod(ismember(S{i},S{j}))==1 
DiscardMark(j)=1; 
SearchList(i)=0; 

end 
end 

3 = j + 1; 
end 

end 
i = i + 1; 

end; 
Indexes = find(-DiscardMark); 
P = S(Indexes); 

% End of file 'fPartition.m' 
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function similar = fuzzyeq(LineDescription, TotalLineDescription) 
% 
% Use: 
% 
%     similar = fuzzyeq(LineDescription,TotalLineDescription) 
% 
% where 
% 
%    LineDescription = [angle, disp, basel, baseJ,... 
% LimitII, LimitI2, LimitJl, LimitJ2] 
% 
% Description: Checks if there is a similar line segment in 
% 'TotalLineDescription' to 'LineDescription' 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'fuzzyeq.m' 

global limitDist 
angle=LineDescription(l); 
disp=LineDescription(2); 
base=LineDescription(3:4)'; 
LimitI=LineDescription(5:6)'; 
LimitJ=LineDescription(7:8)'; 

similar=0 ; 
% k=size(TotalLineDescription, 2) ; 
k=l; 
while (k <= size(TotalLineDescription,2)) &not(similar), 

a=TotalLineDescription(l,k); 
d=TotalLineDescription(2,k); 
b=TotalLineDescription(3:4,k)'; 
LI=TotalLineDescription(5:6,k)'; 
LJ=TotalLineDescription(7:8,k)'; 
Dl=sqrt((LI(l)-LimitI(l))*(LI(l)-LimitI(l)) + (LJ(1)-LimitJ(l))*(LJ(1) ■ 

LimitJ(l))); 
D2=sqrt((LI(2)-LimitI(2))*(LI(2)-LimitI(2)) + (LJ(2)-LimitJ(2))*(LJ(2) • 

LimitJ(2))); 
similar = (max([Dl D2]) < limitDist); 
k=k+l; 

end 

% End of file 'fuzzyeq.m' 
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function G = graphPL(PL, P, IJ, sizeA) 
% 
% G = graphPL(PL, P, IJ, sizeA) 
% 

% Description: Computes the endpoint connectivity graph. 

0 % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe  % 

1 % % Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

%== 
% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 

% This file named:    'graphPL.m' 

% % 

n=size(PL,2); 

G=uint8(zeros(2*n, 2*n)); 

R = 2; 
radiusSquared = (R + 0.5)*(R + 0.5); 
neighborhoodMask = uint8(zeros(2*R+1,2*R+1,size(P, 3))); 
for i=-R:l:R, 

for j=-R:l:R, 
if (i*i + j*j) <= radiusSquared 

neighborhoodMask(i+R+1,j +R+I,:)=1; 
end 

end 
end 

% connect the endpoints of the same line-segment 
for k=l:n, 

PI = 2*(k-l) + 1; 
P2 = 2*(k-l) + 2; 
G(P1, P2) = 1; 
G(P2, PI) = 1; 

end 

% connect the neighbor endpoint s 
for k=l:n, 

[iP, jP] = integerEndPoints(PL, k , sizeA); 

for g=l:2, 
i = iP(g);  j = jP(g); 

NeighborhoodlRange = [max([l i-R]):min([i+R sizeA(l)])]; 
NeighborhoodJRange = [max([l j-R]):min([j+R sizeA(2)])]; 

onBorders = (i < R+l) | (j < R+l)|(i+R > sizeA(l)) | (j+R > sizeA(2)); 
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Neighborhood? = P(NeighborhoodlRange,NeighborhoodJRange,:); 

if onBorders 
% raw squared neighborhood 
[I, J, H] = ind2sub([length(NeighborhoodlRange) 

length(NeighborhoodJRange)],... 
find(NeighborhoodP(:,:,:))); 

else 
% refined circular neighborhood 
[I, J, H] = ind2sub([length(NeighborhoodlRange) 

length(NeighborhoodJRange)] , . . . 
find(NeighborhoodP(:,:,:)&neighborhoodMask)); 

end 

for t=l:length(I), % test all vertices found inside Neighborhood 
endPointNUmber = NeighborhoodP(I(t), J(t), H(t)); 
if G(2*(k-l)+g, endPointNUmber)==0 

G(2*(k-l)+g, endPointNUmber)=2; 
end 

end 
G(2*(k-l)+g, 2*(k-l)+g)=0; 

end 
end 

zerosnn=uint8(zeros(n,n) ) ; 
Len=lengthOfPL(PL) ; 
perpRelated=zerosnn; 
paraRelated=zerosnn; 
% transvRelated=uint8(zeros(2*n,2*n)); 
HALFANGLEMAXl=20*pi/(2*180) ; % 15 degrees / 2 
ComparisonAnglel=pi/2-HALFANGLEMAXl; 
HALFANGLEMAX2=45*pi/(2*180) ; % 15 degrees / 2 
ComparisonAngle2=pi/2-HALFANGLEMAX2; 
ComparisonAngle3=pi/4-HALFANGLEMAX1; 
thetas=PL(l,:); 
% To save memory, do it line-by-line: 
for i=l:n, 

DeltaThetaMatrix = thetas-thetas(i); 
perpRelated(i,find(abs(mod(DeltaThetaMatrix-pi/2, pi) - pi/2) > 

ComparisonAngle2))=1; 
paraRelated(i,find(abs(mod(DeltaThetaMatrix, pi) - pi/2) > 

ComparisonAnglel))=1; 
end 
clear DeltaThetaMatrix 

for kl=l:n, 
% kl 
for k2=kl+l:n, 

%if (kl== ) & (k2== ) 
% [kl k2] 
%end 

k = [kl k2]; 

% connect the closer endpoints of perpendicular line-segments 
if perpRelated(kl, k2) 

[dmin, bestPair, d] = ... 
distBetweenPoints([PL([5 7], kl) PL([6 8], kl)],[PL([5 7], k2) 

PL([6 8], k2)]); 
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pause 

if dmin < sqrt(prod(Lent[kl k2]))) 
pi = 2*(kl-l) + bestPair(1); 
p2 = 2*(k2-l) + bestPair(2); 
if isempty(find(G(pl,:)==2)) | isempty(find(G(p2,:)==2)) 

% plotwithlines(zeros(sizeA),{PL(:,[kl k2])}, 2, {[0 10]}),- 

G(pl, p2) = 3; 
G(p2, pi) = 3; 
end 

end 
end 

% connect the closer endpoints of aligned parallel line-segments 
if paraRelated(kl, k2) 

[lenMin, whoLenMin] = min(Len([kl k2])); 
[lenMax, whoLenMax] = max(Len([kl k2])); 

[dmin, bestPair, dSquared] = ... 
distBetweenPoints([PL([5 7], kl) PL([6 8], kl)],[PL([5 7], k2) 

PL([6 8], k2)]) ; 

oppositePair = 3 - bestPair; 

if (dmin < lenMin)&(dSquared(oppositePair(1) .oppositePair(2)) < 
lenMin*lenMin) 

pi = 2*(kl-l) + bestPair (1) ,• 
p2 = 2*(k2-l) + bestPair(2) ; 
if isempty(find(G(pi,:)==2)) | isempty(find(G(p2,:)==2)) 

PLAux = PLfromPoints(IJ(pl,:), IJ(p2,:), sizeA); 
if abs(mod(PL(l,k(whoLenMax))-PLAux(l),pi/2)-pi/4) > 

ComparisonAngle3 
% plotwithlines(zeros(sizeA) , {PL(:, [kl k2])}, 2, {[0 1 0]}); 

pause 
G(pl, p2) = 5; 

G(p2, pi) = 5; 
end 

end 
pi = 2*(kl-l) + oppositePair(1) ; 
p2 = 2*(k2-l) + oppositePair(2); 

if isempty(find(G(pi,:)==2)) | isempty(find(G(p2,:)==2)) 
PLAux = PLfromPoints(IJ(pi,:), IJ(p2,:), sizeA); 
if abs (mod(PL(l,k(whoLenMax))-PLAux(l),pi/2)-pi/4) > 

ComparisonAngle3 
% plotwithlines(zeros(sizeA),{PL(:,[kl k2])}, 2, {[0 1 0]}); 

pause 
G(pl, p2) = 5; 

G(p2, pi) = 5; 
end 

end 
end 

end 

end 
end 

for kl=l:n, 
%; kl 
for k2=kl+l:n, 
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k = [kl k2]; 

% connect the endpoint if touching body of perpendicular line-segment 
if perpRelated(kl, k2) 

proj=zeros(2,2) ; 

[h(l), projd,:)] = sigdistoline(IJ(2*(k2-l) +1,:), PL (: , kl)); 
[h(2), proj(2,:)]= sigdistoline(IJ(2*(k2-l) + 2,:), PL(:, kl)); 
[minh, gmin] = min(abs(h)); 
if (abs(h(gmin)) < 2*sgrt(2)) & (prod(h) >= 0) &... 

(abs(distBetweenPoints(proj(gmin,:)',PL([5 7],kl))+... 
distBetweenPoints(proj(gmin, :)' ,PL([6 8] ,kl))-Len(kl)) < 1) 

ql = 2*(kl-l) + 1; 
g2 = 2*(kl-l) + 2; 
p = 2*(k2-l) + gmin; 
% if (G(p, ql)==0)&(G(p, q2)==0) 
if (sum(G(p, ql)==[0 3])==1)&(sum(G(p, q2)==[0 3])==1) 

G(p, ql) = 4; 
G(p, q2) = 4; 
G(ql, p) = 4; 
G(q2, p) = 4; 

end 
% plotwithlines(zeros(sizeA),{PL(:, [kl k2])}, 2, {[1 0 0]}); pause 

end 

[h(D, projd,:)] = sigdistoline (IJ(2*(kl-l) + 1,:), PL ( : , k2)); 
[h(2), proj(2,:)] = sigdistoline(IJ(2*(kl-1) +2,:), PL(:, k2)); 
[minh, gmin] = min(abs(h) ) ; 
if (abs(h(gmin)) <  2*sqrt(2)) & (prod(h) >= 0) &... 

(abs(distBetweenPoints(proj(gmin,:)' , PL([5 7] ,k2)) + ... 
distBetweenPoints(proj(gmin,:)', PL([6 8],k2))-Len(k2)) < 1) 

ql = 2*(k2-l) + 1; 
q2 = 2*(k2-l) + 2; 
p = 2*(kl-1) + gmin; 
if (sum(G(p, ql)==[0 3])==l)&(sum(G(p, q2)==[0 3])==1) 

G(p, ql) = 4; 
G(p, q2) = 4; 
G(ql, p) = 4; 
G(q2, p) = 4; 

%cancelLinks = find(G(p,:)==3); 
%G(p,cancelLinks)=0; 
%G (cancelLinks, p) =0 ,- 

end 
% plotwithlines(zeros(sizeA),{PL(:, [kl k2])}, 2, {[1 0 0]}); pause 

end 
end 

end 
end 
clear perpRelated paraRelated 

% End of file 'graphPL.m' 
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function [ISeq, JSeq, totalPerimeter, supportedFraction]... 
= IJSeqFromPathdoopPath, IJCoordinates, PL, G, sizeA) 

% 
% [ISeq, JSeq] = IJSeqFromPathdoopPath, IJCoordinates, G, sizeA) 
% 
% Description: Computes the polygon determined by a cycle in G. 

%=================================================================% 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

%  % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'IJSeqFromPath.m' 

c = loopPath([1 2]); 

for k=3:length(loopPath) , 
p2 = loopPath(k); 
pi = 2*floor((p2-l)/2) + 2 - mod(p2-l, 2); 
c = [c pi p2]; 

end 
c = [c loopPath( [1 2] ) ] ; 

% Len = lengthOfPL(PL); 

ISeq = IJCoordinates(c(1:2),1)'; 
JSeq = IJCoordinates(c(1:2),2)'; 
supportedPerimeter = distBetweenPoints([ISeq(l) JSeq(l)]', [ISeq(2) JSeq(2)]'); 
totalPerimeter = supportedPerimeter; 

k=3; 
while k <= length(c)-l, 

% p = 2*floor((p2-l)/2) + 2 - mod(p2-l, 2); 
gJump = double (G(c (k-1) ,c(k) )) ,- 
switch gJump 

case {1,2,5} 
ISeq = [ISeq IJCoordinates(c(k),1)]; 
JSeq = [JSeq IJCoordinates(c(k),2)]; 
jumpLength = distBetweenPoints(IJCoordinates(c(k-1),:)', 

IJCoordinates(c(k),:)'); 
totalPerimeter = totalPerimeter + jumpLength; 
switch gJump 

case 1 
supportedPerimeter = supportedPerimeter + jumpLength; 

case {2,5} 
end 

case 2222 % (perimeter computation is approximated) 
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PLl=PLfromPoints(IJCoordinates(c(k-2),:) ,IJCoordinates(c(k- 
1),:),sizeA); 

PL2=PLfromPoints(IJCoordinates(c(k),:),IJCoordinates(c(k+1),:),sizeA); 
if abs(cos(mod(PLl(l)-PL2(2)-pi/2,pi))) > cos(pi/6) 

intersectionPoint = ... 
intersectLines(IJCoordinates([c(k-2) c(k-l)],:),... 

IJCoordinates([c(k) c(k+l)],:)); 
ISeq(length(ISeq)) = intersectionPoint(1); 
JSeq(length(JSeq)) = intersectionPoint(2); 

else 
ISeq = [ISeq IJCoordinates(c(k) , 1)]; 
JSeq = [JSeq IJCoordinates(c(k),2)]; 

end 
jumpLength = distBetweenPoints(IJCoordinates(c(k-1),:)', 

IJCoordinates(c(k), :) ') ; 
totalPerimeter = totalPerimeter + jumpLength; 

case 3 
intersectionPoint = ... 

intersectLines(IJCoordinates([c(k-2) c(k-1)],:),.. . 
IJCoordinates([c(k) c(k+1)],:)); 

K = length(ISeq)+1; 
previousJump = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', [ISeq(K-l) 

JSeq(K-1)]'); 
jumpLength = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', 

intersectionPoint'); 
totalPerimeter = totalPerimeter + jumpLength - previousJump; 
if jumpLength < previousJump 

supportedPerimeter = supportedPerimeter + jumpLength - 
previousJump; 

end 

jumpAfterCorner = distBetweenPoints(IJCoordinates(c(k+1),:)', 
intersectionPoint'); 

totalPerimeter = totalPerimeter + jumpAfterCorner; 

supportedPerimeter = supportedPerimeter + ... 
min([jumpAfterCorner,... 

distBetweenPoints(IJCoordinates(c(k),:)', 
IJCoordinates(c(k+1),:)')]); 

ISeq(length(ISeq)) = intersectionPoint(1); 
JSeq(length(JSeq)) = intersectionPoint(2); 

if k < length(c)-l 
% do nothing 

else 
firstJump = distBetweenPoints([ISeq(1) JSeq(l)]', [ISeq(2) 

JSeq(2)]'); 
totalPerimeter = totalPerimeter - firstJump; 
supportedPerimeter = supportedPerimeter - firstJump,- 

ISeq = ISeq(2:length(ISeq)); 
JSeq = JSeq(2:length(JSeq)); 
ISeq = [ISeq ISeq(l)]; 
JSeq = [JSeq JSeq(l)]; 

end 

case 4 
intersectionPoint = ... 
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intersectLines(IJCoordinates([c(k-2) c(k-l)],:),... 
IJCoordinates ([c(k) c(k+l) ]•,:)) ; 

K = length(ISeq)+1; 

previousJump = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', [ISeq(K-l) 
JSeq(K-l)]'); 

jumpLength = distBetweenPoints([ISeq(K-2) JSeq(K-2)]', 
intersectionPoint'); 

totalPerimeter = totalPerimeter + jumpLength - previousJump; 

if jumpLength < previousJump 
supportedPerimeter = supportedPerimeter + jumpLength - 

previousJump; 
end 

jumpAfterCorner = distBetweenPoints(IJCoordinates(c(k+1),:)', 
intersectionPoint'); 

totalPerimeter = totalPerimeter + jumpAfterCorner; 

supportedPerimeter = supportedPerimeter + . .. 
min([jumpAfterCorner,... 

distBetweenPoints(IJCoordinates(c(k),:)', 
IJCoordinates(c(k+1),:)')]); 

ISeq(length(ISeq)) = intersectionPoint(1); 
JSeqQength(JSeq) ) = intersectionPoint(2); 

if k < length(c)-l 
ISeq = [ISeq IJCoordinates(c(k),1)]; 

JSeq = [JSeq IJCoordinates(c(k),2)]; 
else 

firstJump = distBetweenPoints([ISeq(l) JSeq(l)]', [ISeq(2) 
JSeq(2)]'); 

totalPerimeter = totalPerimeter - firstJump; 
supportedPerimeter = supportedPerimeter - firstJump; 
ISeq = ISeq(2:length(ISeq) ) ; 
JSeq = JSeq(2:length(JSeq)) ; 
ISeq = [ISeq ISeq(l)]; 
JSeq = [JSeq JSeq(l)]; 

end 
otherwise 

dispC ') 
end 
k = k + 1; 

end 

supportedFraction = supportedPerimeter / totalPerimeter; 

% % 

function P = intersectLines(Ll, L2); 
P1=L1(1,:); Q1=L1(2,:); 
P2=L2(1, :); Q2=L2(2, :) ; 
ul=Ql-Pl; u2=Q2-P2; 
L = inv([ul' u2'])*(P2-P1)'; 
P = PI + L(l)*ul; % = P2 + L(2)*u2; 

% End of file 'IJSeqFromPath.m' 
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function [CX, CY, V]=improfile2(A,JVSeq,IVSeq) 
% 
% Description: Find the sequence of pixels along a polygonal line, 
% given by its vertices. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science  • % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'improfile2.m' 

[m,n]=size(A); 
controlFrame=zeros(m,n); 

CX=[]; 
CY=[]; 
V=[]; 
dist=zeros(1,3) ; 
for k=l:length(JVSeq)-l, 

P0=min(max(round([IVSeq(k)   JVSeq(k)  ]-0.5), 1), [m n]); 
Pl=min(max(round([IVSeq(k+l) JVSeq(k+l)]-0.5), 1),[m n]); 
controlFrame(POd) ,P0(2))=1; 
CY=[CY P0(1)]; 
CX=[CX P0 (2) ] ; 
V=[V A(P0(1),P0(2))]; 
PNow=Pl; 
while sum(PNow==P0)-=2, 

controlFrame(PNowd) ,PNow(2) ) =1; 
CY=[CY PNow(l)]; 
CX=[CX PNow(2)]; 
V=[V A(PNow(1),PNow(2))], 
DI=sign(P0(l) - PNow(l)) 
DJ=sign(P0(2) - PNow(2)) 
Q=[(PNow+[DI DJ])' (PNow+[DI 0])' (PNow+[0 DJ])']; 

% on the line, N = | | (j - jO) *(i - il) - (j - jl)*(i - 10) | | = 0 
for q=l:3, 

dist(q)=abs((Q(2,q)-P0(2))*(Q(l,q)-Pl(D) - (Q(2 , q)-PI (2) ) * (Q(l, q) • 
P0(1))) ; . 

end 
[dmin,indexToNewP]=min(dist); 
PNow=Q(:,indexToNewP)'; 

end 
end 

% End of file 'improfile2.m' 
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function  [iP, jp] = integerEndPoints(PL, k , sizeA) 
% 
% Description: Builds a table with the coordinates of the endpoints, 
% rounded to the nearest integer. 

% ============================% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
*  % 

% Programing Language: Matlab 5.3 
% Operational System: Windows NT 4.0 
% 
% This file named:    'integerEndPoints.m' 

iP  = round(PL([5   6],k)'); 
jP =  round(PL([7   8],k)'); 
iP = max(iP,    [1  1])■ 
jP  = max(jp,    [1  1]); 
iP = min(iP,sizeA(l)*[1  1]); 
jP = min(jP,sizeA(2)*[l   1]); 

% End of file 'integerEndPoints.m' 

98 



function c = lengthOfPL(PL) 
% 
% Description: computes the length of primitive line segments in 'PL' 
% 

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: = = = =: = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = % 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
%     • % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'lengthOfPL.m' 

% % 

DI = PL(5,:)-PL(6,:); 
DJ = PL(7,:)-PL(8,:); 
c = sgrt(DI.*DI + DJ.*DJ); 

%============================================================:=====% 
% End of file 'lengthOfPL.m' 
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function booleanReturn = lineseg(Seg) 
% 
% Description: Defines criterion for acceptable edge segments. 
% 

* % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 

I % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
*  % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'lineseg.m' 

% % 

% Edges should have at least three pixels. 

booleanReturn = length(find(Seg))>=3; 

% End of file 'lineseg.m' 
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function   [loop,   h]   =  loopfromPL(InitialPath,   HMAX,   IJCoordinates,   A,   PL); 
% 
%    Usage: 
% 
%     [loop,   h]   =  loopfromPL(InitialPath,   HMAX,   IJCoordinates,   A,   PL); 
% 
% Description: Searches for a cycle in G containing 'IntialPath'. 
% 
% Global G is nxn binary matrix representing the edge 
%  connections in an oriented graph of N vertices. 
%  "p", one of the vertices; "H" max depth of search. 
% 
% 
% 
% P=P0 

/ 1    \ 
Pll P12  P13 
/ /  1  \ 
1 P22 P23 P24 

/    1 
P31  P32=P0 {PO, P13, P23, PO} 

cycle found! 

=% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 

% This file named: 

global G 

debugOn = 0; 

N = size(G,l); 

'loopfromPL.m' 

f = InitialPath(l); 
p = InitialPath(length(InitialPath)); 

prohibited = InitialPath(2:length(InitialPath)); 

for k=l:N, 
distance(k) = sum((IJCoordinates(k,:) - IJCoordinates(f,:)). ~2); 

end 

Found = 0; 
Fail = 0; 
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counter = ones(1,HMAX); 
cMax = zeros(1,HMAX); 

h = 1; 
nextSet = 1; 
while (-Found)&(-Fail), 

f = InitialPath(l),- 
p = InitialPath(length(InitialPath)); 

pathSet = InitialPath(l:length(InitialPath)-l) ,- 
prohibited = InitialPath(2:length(InitialPath) ) ; 
nextSet = 1; 
h = 1; 

% place to probe counter, if debugging 

if debugOn 

plotwithlines(A,{PL PL(:,floor((prohibited-1)12) +1) PL(:,floor((pathSet- 
l)/2)+l) },[2 2 2],{[1 0 1] [1 0 0] [0 1 0]}) 

pause 
end 

f); 

while (-isempty(nextSet)) & (h <= HMAX) & (-Found) &   (-Fail), 
[nextSet, pathSet, prohibited, Found] = nextTotp, pathSet, prohibited, 

% debug only 
cMax(h) = length(nextSet); 

% distance from nextSet(k) to f 
[dummySorted, slndex] = sort(distance(nextSet)); 
nextSet = nextSet(slndex); 

if counter(h) > length(nextSet) 
if h > 1 

counter(h-1) = counter(h-1) + 1; 
counter(h:HMAX)=1; 
h = 1; 
p = InitialPath(length(InitialPath)); 
pathSet = InitialPath (1: length (InitialPath)-1) ,- 
prohibited = InitialPath(2:length(InitialPath)); 

else 
Fail = 1; 

end 
else 

if (-isempty(nextSet))&(h < HMAX) 
p = nextSet (counter (h) ) ,- 

% 
if debugOn 

v=axis; 
plotwithlines(A,{PL PL(:,floor((prohibited-1)/2)+1)... 

PL(:,floor((pathSet-l)/2)+l) PL(:,floor((p-1)/2)+1)},.. . 
[2 2 2 2],{[1 0 1][1 0 0][0 1 0][1 1 0]}) 

str=[]; 

for ih=l:h, 
str=[str int2str(pathSet(1+ih)) ':(' int2str(counter(ih))... 

'/' int2str(cMax(ih)) '), ']; 
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end 
str = [str '—>' int2str(p) '  options: '... 

int2str(find(G(pathSet(l+h),:)>1)) ' types: ' 

int2str(double(G(pathSet(1+h),find(G(pathSet(1+h),:)>1))))]; 
title(str) 
xlabel(int2str(pathSet)) 
axis(v) 
pause 

end 
h = h + 1; 

else 
counter(h) = counter(h) + 1; 
counter(h:HMAX)=1; 

end 
end 

end 
end 

if Found 
loop = pathSet; 

else 
loop = [ ] ; 

end 

% End of file 'loopfromPL.m' 
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function PLinNeighborhood = neighborPL(i, j, P, R) 
% 
% Usage: 
%        PLinNeighborhood = neighborPL(i, j , P, R) 
% 
% Description: 
% Finds all the indexes of all primitive line-segments that 
% have endpoints in the R-radius neighborhood of (i,j), by 
% inspecting the endpoint lookup table 'P'. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'neighborPL.m' 

sizeA = size(P) ; 

PLinNeighborhood = []; 

NeighborhoodlRange = [max([l i-R]):min([i+R sizeA(l)])]; 
NeighborhoodJRange = [max([l j-R]):min([j+R sizeA(2)])]; 

Neighborhood? = P(NeighborhoodlRange,NeighborhoodJRange,:); 

[I, J, H] = ind2sub([length(NeighborhoodlRange) length(NeighborhoodJRange)] 
find(NeighborhoodP(:,:,:))); 

for t=l:length(I), % test all vertices found inside Neighborhood 
endPointNUmber = Neighborhood?(I(t), J(t), H(t)); 
PLnumber = floor((endPointNUmber-1)/2)+1; 
PLinNeighborhood = [PLinNeighborhood PLnumber]; 

end 

PLinNeighborhood = unique(PLinNeighborhood); 

% End of file 'neighborPL.m' 
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function [nextSet, pathSet, prohibited. Found] = nextTo(i, path, prohibited, f) 
% 
% Usage: 
% [nextSet, pathSet, prohibited, Found]... 
% = nextTo(i, path, prohibited, f) 
% 
% Description: 
% Evaluates the next possibilities for path continuation 
% from the current 'path', when searching for cycles. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF   • % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'nextTo.m' 

global G 
next = setdiff(find(G(i,:) > 1), prohibited); 
prohibited = [prohibited next]; 

Found = ismember(f, next);%&isempty(intersect(next, setdiff(path,f))); 
if Found 

nextSet = f; % next; 
pathSet = [path i]; 

else 
if -isempty(next) 

for k=l:length(next) , 
next(k) = find(G(next(k),:)==1); 

end 
next = setdiff(next, prohibited); 
prohibited = [prohibited next]; 

end 
if isempty(next) 
nextSet = []; 

pathSet = []; 
Found = 0; 
else 

if length(next)==1 
[nextSet, pathSet, prohibited, Found] = ... 

nextTofnext, [path i], prohibited, f); 
else 

nextSet = next; 
pathSet = [path i]; 

end 
end 

end 

% End of file 'nextTo.m' 
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% 
% Description: 
% 
% This script program: 
% (i) Computes the (Cannys method)edge image from the input image. 
% (ii) Detects some of the corners and junctions for enhanced 
%      line-segment extraction by morphological operations. 
% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 

I        ■ % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 

I % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4 0 
% 
% This file named:    'Phasel.m' 

disp (' ==========================================================_===_========,j 

disp( ['Begining of edge extraction phase for image in: '" FileName ""])• 
Tl=clock; [B, CB, sei] = edgedetec(A); T2=clock; 
timeSpentExtractingEdges=etime(T2 , Tl) ; 
disp(['Edge extraction completed: ET=' num2str(timeSpentExtractingEdges)]); 

% Compute pixels in any main edge 
BTotal=zeros(size(B{l})); 
for k=l:length(sei), 

BTotal=B{k}|BTotal; 
end 

% plot edges extracted from 'A' 
if showContours 

figlhandle=figure(l); 
for k=l:length(sei), 

EdgeOnlyImage=... 
uint8(round(255*(1-double(BTotal)))); 

% imagesc(EdgeOnlylmage); 
imwrite(EdgeOnlyImage,[FileName '.edgeOnly(' int2str(k) 

'of int2str(length(sei)) ') . tif ] , ' tif') ; 

EdgeWithCornersImage=... 
uint8(round(255*(21 - 16*double(CB{k>)-4*double(B{k})- 

double(BTotal))/21)); 
imagesc(EdgeWithCornersImage); 
imwrite(EdgeWithCornersImage,[FileName '.edgeWithCorners('... 

int2str(k) 'of int2str(length(sei)) ') .tif' ] , ' tif') ; 
colormap(gray); 
title(["" FileName '": Edge extraction ' int2str (k) . . . 

' of ' int2str(length(sel))]); 
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axis image 
axis on 

if logResults 
hgsave(figlhandle,[FileName '.edgeC int2str(k) 'of. 

int2str(length(sei)) ').Fig' ]); 
else 

pause(1) 
end 

end 
end 

% End of file 'Phasel.m' 
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% 
% Description: This script program extracts primitive lines from 
% the edge image derived from original input image. 
% Results are plot graphically. 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
%  % 

% Programing Language: Matlab 5.3 
% Operational'System:  Windows NT 4.0 
% 
% This file named:    'Phasell.m' 

% % 

disp('========================================================================•) 

disp(['Begining of primitive line search phase for image in: ''' FileName 

fig2handle=figure(2); 
Tl=clock; PL = prilines(A, B, CB, sei); T2=clock; 
timeSpentExtractingPL=etime(T2,T1); 

% plot primitive lines extracted from 'A' 
elf 
plotwithlines(A,{PL},1.5,{[0 0 1]}); 
title([int2str(size(PL,2)) ' primitives line segments found']); 
xlabel([date ' ' int2str(T2(4)) ':' sprintf('%2.2d',T2(5))... 

',  ET=' num2str(round(10*etime(T2,Tl))/10) 's']) 
disp(['End of primitive line search phase: ET=' num2str(etime(T2,Tl))]); 

if logResults 
hgsave(fig2handle,[FileName '.PL.Fig']); 
save([FileName '.Phasen.mat']); 

end 

% End of file 'Phasell.m' 
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% 
% Description: 
% 
% 
% 

This script program clusters the line segements 
extracted from the original image in approximately- 
unrelated sets, to break the complexity of the 
connectivity analysis to follow. Then plots the 
resulting clusters with a number of different colors 
for improved visualization. The subprogram that 
actually computes the clustering is 'breakPL', 
called once from this code. 

COMPUTER-AIDED RECOGNITION OF 
MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS 

% = 
% 
% 
% 
% 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe 
% 
% Department of Computer Science 
% Naval Postgraduate School, September 1999 

Programing Language: Matlab 5.3 
Operational System:  Windows NT 4.0 

This file named: 'PhasellA.m' 

%- 

PLTotal=PL; 
[PLCluster, Clusterization] = breakPL(PLTotal); 
PLClusterOrig=PLCluster; 
ClusterizationOrig=Clusterization; 

SizeCluster=[]; 
for w=l:size(ClusterizationOrig,2), 

SizeCluster=[SizeCluster size(ClusterizationOrig{w}, 2) ] ; 
end 
[SortedSizeCluster,IndexSorted]=sort(SizeCluster); 
SortedSizeCluster = fliplr(SortedSizeCluster); 
IndexSorted = fliplr(IndexSorted); 

for w=l:size(ClusterizationOrig,2), 
PLCluster{w}=PLClusterOrig{IndexSorted(w)}; 
Clusterization{w}=ClusterizationOrig{IndexSorted(w)}; 

end 

SeparatingColor=[. . 
1 0 
1 0 
0 1 
0 0 
0.5 

0 0.5 
0 1 
0.5 0 
0.75 0.75 0 
0.5  0    1 

%yellow 
%green 
%blue 
%red 
%orange 
%dark green 
%cyan 
... %dark brown 

r... %brown 
;...   %purple 
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1    0    12 
1 0.75 0.75 2 
0.6 0.6   1 2 

]; 

... %magenta 

... %pink 

... %light blue 

S=0; 
thickNessOfColor=zeros(1,size(Clusterization,2)); 
for w=l:size(Clusterization,2) , 

colors{w}=SeparatingColor(mod(w-1,size(SeparatingColor,1))+1,1:3); 
thickNessOfColor(w)=... 

SeparatingColor(mod(w-1,size(SeparatingColor,1))+1,4); 
S=S+size(Clusterization{w}, 2) ; 

end 

fig3handle=figure(3) ; 
plotwithlines(A,PLCluster,thickNessOfColor, colors); 
title(tint2str(S) ' out of ' int2str(size(PL,2))... 

' PL were clustered into ' int2str(size(Clusterization,2)) . . . 
' sets. Largest cluster has '... 
int2str(size(PLCluster{l},2)) ' PL.']); 

if logResults 
hgsave(fig3handle,[FileName '.PLCluster.Fig']); 
save([FileName '.PhasellA.mat']); 

end 

% End of file 'PhasellA.m' 
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% 
% Description: This script program merges approximately colinear 
% primitive line segments. 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School,'September 1999 % 
■% % 

%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'Phaselll.m' 

% _ % 

disp(' ') ; 
disp( ['Begining of PL merge phase for image in: ''' FileName '"']); 

MergedPLl = {} ; 
NewLines = [ ] ; 

Tl=clock; 
for k=l:length(PLCluster), 

disp( ['Merging PL cluster ' int2str(k) ' in: '" FileName ''"]); 
[Mergedl, Colinearlndexesl, NewMergedLinesl, NumberOfClustersl] =... 

colinear(PLCluster{k}, A, cos(20*pi/180), sin(5*pi/180)); 
MergedPLl{k} = Mergedl; 
NewLines = [NewLines NewMergedLinesl]; 

if (-logResults) & (size(MergedPLl{k},2) > 2) 

% plot primitive lines extracted from 'A', emphasized colinear touching 
lines 

fig3Ahandle=figure(4); 

plotwithlines(A,{PLCluster{k} PLCluster{k}(:,ColinearIndexesl)... 
PLCluster{k}(:,ColinearIndexesl)} , ... 

[1 3 2],{[0 0 1][1 0 0][1 1 0]}); 
title([int2str(length(Colinearlndexesl)) ' aligned PL''s found in 2nd 

step.']) 

fig3Bhandle=figure(5); 
plotwithlines(A,{PLCluster{k} PLCluster{k}(:,Colinearlndexesl)... 

NewMergedLinesl NewMergedLinesl},... 
[3 2 3 2],{[1 0 0][1 1 0][1 1 0][0 0 0]}); 

title(['PL merging step 1: Number of PL''s reduced to ' 
int2str(size(MergedPLl{k},2) ) ' . ' ] ) 

xlabel([date ' ' int2str(T2(4)) ':' sprintf('%2.2d',T2(5))... 
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',  ET=' num2str(round(10*etime(T2,Tl))/10) 's']) 

paused) 
end 

end 
T2=clock; 

disp(['End of PL merge phase, step 1: ET=' num2str(etime(T2,Tl))]); 

fig3Chandle=figure(6); 
plotwithlines(uint8(255*ones(size(A))),{[MergedPLl{:}] NewLines NewLines}, 

[2 3 2],{[0 0 1] [1 0 0] [1 1 0]}); 

title([int2str(size(NewLines,2)} ' merged lines, remaining '... 
int2str(size([MergedPLl{:}],2)) ' PL']); 

MergedPL=MergedPLl; 

disp(['Total PL merge phase: ET=' num2str(etime(T2,T1))]); 

if logResults 
hgsave(fig3Chandle,[FileName '.MergedPL.fig']); 
save([FileName '.Phaselll.mat']); 

end 

% End of file 'Phaselll.m' 
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function [PL, loop, PLinLoop, DecomposedPLLoops, Indexes,... 
contourLoop, supportedFraction, shaperErr, errMax, XJCoordinates] = ... 
PhaseIVA(A, unsortedPL, logResults, FileName, PLClusterNumber) 

% 
% loop{k} = [sequence of endpoint s] defining a closed path, in G, 
% starting from node 2k and primitive line segment k 
% (second endpoint in the sequence is node 2k-l, for 
% which we have G(2k,2k-l)=1). 
% If a cycle is not found at the maximum depth of 
% search adopted and starting from line segment k, 
% loop{k} will be empty. Following the two first 
% end-nodes in loop{k} that belong to the same PL, 
% only the 'leaving' end-node of each PL will be 
% represented. Thus if a cycle is formed by x PL, 
% length(loop{k}) will be 2 + (x-1) = x+1 
% 
% PLinLoop{k} = [sorted set of indexes of those PL forming loop{k}] 
% 
% DecomposedPLLoops = the cycles that don't contain cycles 
% 
% Indexes = the indexes in loop and PLinLoop for those cycles that don't 
% contain cycles 
% 
% contourLoop{i} = matriz mx2 of IJCoordinates of the polygon associated 
% with the i-th cycle that don't contain cycles 
% 
% 
% Description: Performs the connectivity analysis on graph G, 
% finding the cycles, computing buiding-likelihood 
% indexes for each of them and plotting the results 
% graphically. 
% 

%=============== ===============================================% 
% • % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'PhaselVA.m' 

global G 

% Debug shortcut 
RecomputeG = 1; 
if RecomputeG 

Len=lengthOfPL(unsortedPL); 
[sortedLen, sLenlndex]=sort(Len); 
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PL=unsortedPL(:, fliplr(sLenlndex)); 

[P, Q, LostPL, IJCoordinates] = pixelPL(PL, size(A)); 

disp(['Building endpoints graph for cluster #'... 
int2str(PLClusterNumber) ' of ''' FileName '''']); 

G = graphPL(PL, P, IJCoordinates, size(A)); 
end 

fig4handle=figure(7); 

debugFlag = 0; 

% find cycles in graph G with distance sort depth-first algorithm 
[loop, PLinLoop, h] = ... 

smartFindCycles(G, A, PL, IJCoordinates, debugFlag); 

if length([loop{:}]) > 0 
% eliminate cycles that contain cycles 
[DecomposedPLLoops, Indexes] = ... 

seploops(A, PLinLoop, PL, 1, debugFlag); 

if length(Indexes) > 0 
% compute error measures and optionally plot for debugging 
[contourLoop, shaperErr, errMax, supportedFraction] = ... 
plotcontours(A, loop, PLinLoop, G, Indexes,... 
PL, IJCoordinates, debugFlag) ,- 

else 
contourLoop = []; 
shaperErr = [ ] ; 
errMax = []; 
supportedFraction = [ ] ,- 

end 
else 

DecomposedPLLoops = []; 
Indexes = []; 
contourLoop = []; 
shaperErr = []; 
errMax = []; 
supportedFraction = []; 

end 

% End of file 'PhaselVA.m' 
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function [NumberOfBuildingClusters, BuildingCluster] = ... 
PhaseVA(A, imageBackground, Building, FLCluster,... 
pixelLength, Filename, debugMode, numberPlot) 

% 
% Building = 
% PL: {l:NumberOfBuildingCycles} 
% Cycle: {1:NumberOfBuildingCycles} 
%   OwnerCluster: [1:NumberOfBuildingCycles] 
% 
% Description: Assembles the building clusters from the polygons 
% that are building contour candidates and plots them 
% with different saturated random colors, to 
% improve visualization. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'PhaseVA.m' 

% % 

elf reset 

if numberPlot 
if imageBackground 

imagesc(0.75 + 0.25*double(A)/255, [0 1]); axis image; ... 
colormap(gray); plotColor=[l 1 1]*0.9; 

else 
image(uint8(255*ones(size(A)))); axis image; ... 

colormap(gray) ,- plotColor=[l 1 1]*0.9; 
end 

else 
if imageBackground 

imagesc(double(A)/255, [0 1]); axis image; ... 
colormap(gray); plotColor=[0 1 0] ; 

else 
image(uint8(255*ones(size(A)))); axis image;... 

colormap(gray); plotColor=[0 0 0]; 
end 

end 

if iscell(PLCluster) 
NumberOfClusters=length(PLCluster); 

else 
NumberOfClusters=l ; 

end 

% Detect touching building cycles and form building clusters 
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NumberOfBuildingClusters = 0; 
BuildingCluster.Cluster = []; 
BuildingCluster.OwnerCluster = []; 
BuildingCluster.IndexesInCluster = []; 

for k=l:NumberOfClusters, 
% find all the cycles in the k-th cluster of primitive lines 
if iscell(PLCluster) 

whoInCluster = find(Building.OwnerCluster==k); 
else 

whoInCluster = [1:size(PLCluster,2)]; 
end 

if -isempty(whoInCluster) 
% merge those cycles who have non-null intersection 
[Clusters, Partitionindexes] = ... 

rPartition(Building.PL(whoInCluster)); 

for i=l:length(Partitionindexes), 

BuildingCluster.IndexesInCluster = ... 
[BuildingCluster.IndexesInCluster.. . 

{whoInCluster(PartitionIndexes{i})}]; 
end 

NumberOfBuildingClusters = ... 
NumberOfBuildingClusters + length(Partitionindexes); 

BuildingCluster.Cluster = ... 
[BuildingCluster.Cluster Clusters]; 

BuildingCluster.OwnerCluster = ... 
[BuildingCluster.OwnerCluster... 

k*ones(l,length(Partitionindexes))]; 
end 

end 

BuildingCluster.ICenter = zeros(1,NumberOfBuildingClusters); 
BuildingCluster.JCenter = zeros(1, NumberOfBuildingClusters); 
BuildingCluster.Area = zeros(1,NumberOfBuildingClusters); 
BuildingCluster.AvLight = zeros(1,NumberOfBuildingClusters); 
BuildingCluster.StdDevLight = zeros(1,NumberOfBuildingClusters); 

for i=l:length(BuildingCluster.IndexesInCluster), 
BuildingCluster.Area(i) = 0; 
tColor = 2*pi*rand; 
RandomColor = (1+[cos(tColor) cos(tColor+2*pi/3)... 

cos(tColor+4*pi/3)])12; 
RandomColor2 = (1+[cos(tColor+pi) cos(tColor+2*pi/3+pi)... 

cos(tColor+4*pi/3 + pi)])/2; 

areaControlFrame=uint8 (zeros (size (A) ) ) ,- 

if -isempty(BuildingCluster.IndexesInCluster{i}) 
for j=l:length(BuildingCluster.IndexesInCluster{i}), 

controlFrame=uint8(zeros(size(A))); 

ISeq = Building.Contour{BuildingCluster.IndexesInClusterU}(j)}.ISeq; 
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JSeg = Building.Contour{BuildingCluster.IndexesInCluster{i}(j)}.JSeq; 

[CX, CY, C] = improfile2(A,JSeq,ISeq) ; 
onBorders{j} = unique(sub2ind(size(A) ,CY,CX)); 
controlFrame(onBorders{j})=1; 

areaControlFrame = areaControlFrame | bwfill(controlFrame,'holes'); 

% imagesc(controlFrame) 

if numberPlot 
patch(JSeq, ISeq, plotColor); 

else 
, patch(JSeq, ISeq, RandomColor) ; 

end 
% pause, for debugging 

end 

arealncludingBordersInPixels = sum(areaControlFrame(:)); 

[IPixels, JPixels] = ind2sub(size(A), find(areaControlFrame)); 
BuildingCluster.ICenter(i) = sum(IPixels)/arealncludingBordersInPixels; 
BuildingCluster.JCenter(i) = sum(JPixels)/arealncludingBordersInPixels; 

edgeAreaControlFrame = edge(areaControlFrame,'canny'); 

% Debug patch (uncomment for debugging): 

% elf 
% subplot(121); imagesc(areaControlFrame); colormap(l-gray/10); axis 

image; 
% subplot(122); imagesc(edgeAreaControlFrame); colormap(l-gray/10); axis 

image; 
% pause 

perimeterlnPixels = sum (edgeAreaControlFrame (:)); 

areaEstimate = (pixelLength"2)*... 
(arealncludingBordersInPixels - perimeterInPixels/2); 

BuildingCluster.Area(i) = areaEstimate; 

innerPixels = setdiff(find(areaControlFrame(:)),... 
find(edgeAreaControlFrame(:))); 

BuildingCluster.AvLight(i)=... 
sum(double(A(innerPixels)))/length(innerPixels); 

BuildingCluster.StdDevLight(i)=std(double(A(innerPixels))); 

if numberPlot 
h=text(BuildingCluster.JCenter(i) 

BuildingCluster.ICenter(i),int2str(i)); 
set(h,'Color',[0 0 0],'FontWeight','bold'); 

else 
plotcross(BuildingCluster.JCenter(i) 

BuildingCluster.ICenter(i),[1 1 1]); 
end 

if debugMode 
hl=line([1 340],[BuildingCluster.ICenter(i)... 

BuildingCluster.ICenter(i)]); 
h2=line([BuildingCluster.JCenter(i) . . . 
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BuildingCluster.JCenter(i)],[1 260]); 

pause 
delete(hi) 
delete(h2) 

end 

end 
end 

% print target table - building clusters 
tableTitle = ... 

['|  Building Cluster List for Image in '' 
I']; 
tableTitle(41:41+length(Filename))=[Filename " "]; 
disp('+  
+ '); 
disp(tableTitle) 
disp('+ + + + + +  
+ '); 
disp('| Target ID | Coord I | Coord J |  Area (m2) |  Av Lum |  Std Dev Lum |') 
disp('+ + + +  
+ '); 

for i=l:length(BuildingCluster.IndexesInCluster), 
disp(['|   ' sprintf('%05d',i) '   | ' ... 

sprintf('%7.1f',BuildingCluster.ICenter(i))... 
' | ' sprintf('%7.If',BuildingCluster.JCenter(i)) ' |    '... 
sprintf('%7.Of',BuildingCluster.Area(i)) ' | '... 
sprintf('%7.If',BuildingCluster.AvLight(i)) ' |      '... 
sprintf('%7.If',BuildingCluster.StdDevLight(i)) ' ['... 

]) 
end 
disp(' + + + +  
+ ') ; 

function plotcross(J, I, color) 

d=0.75; 
L=2; 

JSeg=[J-d-L  J-d  j-d  J+d  J+d  J+d+L J+d+L... 
J+d J+d  J-d J-d J-d-L  J-d-L]; 

ISeg=[I-d   I-d   I-d-L I-d-L I-d   I-d  I+d ... 
I+d  I+d+L I+d+L I+d  I+d I-d]; 

patch(JSeq, ISeq, color) 

% End of file 'PhaseVA.m' 
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function [P, Q, LostPL, IJCoordinates] = pixelPL(PL, sizeA) 
% 
% [P, Q, LostPL, IJCoordinates] = pixelPL(PL, sizeA) 
% 
% up to 4 PL vertices may coincide at pixel 
% 
% Description: Computes lookup tables for the endpoints of line 
% segments. The tables are used to speed up 
% computation of which line segments are in the 
% neighborhood of a given point. Up to four endpoints 
% are allowed to coincide on the same pixel. The 
% fifth and those beyond are lost (what is very 
% unlikely to happen). 
% 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'pixelPL.m' 

%  

n=size(PL,2); 

IJCoordinates = zeros(n,2); 

LostPL=[]; 
P=zeros(sizeA(l),sizeA(2) ,4) ; 
Q=zeros(sizeA(l),sizeA(2) ,4) ; 
for k=l:n, 

[iP, jP] = integerEndPoints(PL, k, sizeA); 

inserted=[0 0]; 

for g=l:2, 
IJCoordinates(2*(k-1) + g,:) = PL([5 7]+g-l,k)'; 
h=0; 
while (h < 4)&(-inserted(g)), 
h=h+l; 
if P(iP(g),jP(g),h)==0, 

P(iP(g),jP(g),h)=2*(k-l) + g; 
if jP(l)-=jP(2) 

Q(iP(g),jP(g),h)=mod(PL(l,k)+(g-l)*pi,2*pi); 
else 

if iP(l) < iP(2) 
Q(iP(l),jP(l),h)= 3*pi/2; 
Q(iP(2),jP(2),h)= pi/2; 

else 
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Q(iP(l),jP(i),h)= pi/2; 
Q(iP(2),jP(2),h)= 3*pi/2; 

end 
end 
inserted(g)=l; 

end 
end 

end 

if prod(inserted)~=1 
LostPL = [LostPL k]; 

end 

end 

% End of file 'pixelPL.m' 
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function PL = PLfromPoints(P,Q,sizeA) 
% 
% Description: Creates line segment parametric description from two 
% non-coincident points. 
% 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'PLfromPoints.m' 

% _ % 

LimitI=[P(l) Q(l)]; 
LimitJ=[P(2) Q(2)]; 
[LimitJ, Indexes]=sort(LimitJ); 
LimitI=LimitI(Indexes); 

theta=atan2(LimitI(1)-LimitI(2),LimitJ(2)-LimitJ(1)); 

% compute origin 
CenterXY = f loor ( (sizeA+1) /2) ,- 
CenterR=[l+sizeA(l)-CenterXY(l) CenterXY(2)]  - [0.5 0.5]; 

% compute base point, closest point to the origin on the line 
Disp=CenterR - P(:)'; 
Y=-Disp(l); 
X=Disp(2); 
YSinXCos=Y*sin(theta) + X*cos (theta) ,- 
XProj=cos(theta)*YSinXCos; 
YProj=sin(theta)*YSinXCos; 
Base=P+[-YProj XProj]; 

% compute distance to center 
d=sign(double(Based) < CenterR(l))-0 .5) *norm(Base-CenterR) ; 

PL = [theta d Base LimitI LimitJ]'; 

%=================================================================% 
% End of file 'PLfromPoints.m' 
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function [contourLoop, error, errUax, supportedFraction] =... 
plotcontours(A, loop, PLinLoop, G, Indexes, PL,... 
IJCoordinates, debugMode) 

% Description: Computes the building-likelihood indexes and 
% plots the cycles corresponding to the most likely 
% building contours. 

% ^ 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab 5.3 
% Operational System: Windows NT 4.0 
% 
% This file named:    'plotcontours.m' 

Len = lengthOfPL(PL); 

contourLoop = {} ; 

imagesc(A); colormap(gray); axis image 
for k=l:length(Indexes) , 

%imagesc(A); colormap(gray); axis image 

for m=l:length(Indexes{k}), 
[ISeq, JSeq, totalPerimeter,... 

supportedFraction{length(Indexes{k})*(k-l) + m}] =... 
IJSegFromPath(loop{Indexes{k}(m)} , . . . 

IJCoordinates, PL, G, size(A)); 
contourLoop{ (length(Indexes{k})*(k-l) +m)}=[ISeq' JSeq'],- 

PLIndexes = unique(floor((loop{Indexes{k}(m)}-l)12) +1); 
[sLenSel, slndexes]=sort(Len(PLIndexes)); 
slndexes = fliplr(slndexes); 
BasePL = PL(:,PLIndexes(slndexes(1))); 
BaseTheta = BasePL (1); 

[error{(length(Indexes{k})*(k-l) + m) } , . . . 
errMax{(length(Indexes{k})*(k-l) + m)},... 
error2{(length(Indexes{k})*(k-l) + m)}]... 

= quadError(ISeq, JSeq, BaseTheta, size(A), 0) ,- 

if debugMode 
plotwithlines(A,{PL PL(:,PLinLoop{Indexes{k}(m)})},... 

C3 3],{[0 0 1][1 0 0]}) 
title([int2str(Indexes{k}(m)) ': ['... 

int2str(loop{Indexes{k}(m)}) '], shapErr='... 
num2str(error{(length(Indexes{k})*(k-1) + m)})... 
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', sFrac=' num2str(supportedFraction{length(Indexes{k}>*(k-1) + 
m}) . . . 

', maxErr=' num2str(errMax{length(Indexes{k))*(k-1) + m} ) ]) 
xlabel([' I:' int2str(IJCoordinates(loop{Indexes{k}(m)},1)')... 

'  J:' int2str(IJCoordinates(loop{Indexes{k}(m)},2)')]) 
ylabel(int2str(length(PLinLoop{Indexes{k}(m)}))) 

h=line(JSeq,ISeg); 
set(h,'LineWidth',1) 
set(h,'Color',[0 1 0]) 
end 

end 
if debugMode 

pause 
end 

end 

for k=l:length(Indexes), 

for m=l:length(Indexes{k}), 

if (((length(PLinLoop{Indexes{k>(m)})<=4)&... 
(error{length(Indexes{k})*(k-l) + m} < 0.40)) | - - - 
((supportedFraction{length(Indexes{k})*(k-l) + m}>0.85)&... 

(error{length(Indexes{k})*(k-l) + m} < 0.20))) 

ISeq = contourLoop{(length(Indexes{k})*(k-1) + m)}(:,l); 
JSeq = contourLoop{(length(Indexes{k})*(k-l) + m)}(:,2); 

h=line(JSeq,ISeq); 
set(h,'LineWidth',2) 
set(h,'Color',[0 1 0]) 

% paused) 
end 

end 
% pause 

end 

% End of file 'plotcontours.m' 
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function plotwithlines(A, PrimitiveLines, thickness, colors); 
% 
% Description: Plots primitive line segments extracted from 
% image 'A' supperposed on 'A'. The set of 
% line segments may be partioned into clusters, 
% situation where colors and thicknesses can 
% be individually speciafied for each cluster. 

I % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 

a    • % 

% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe  % 

I % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'plotwithlines.m' 

%- 

imagesc(double(A)/255, [0 1]); axis on; axis image; colormap (gray) 
hold on 

if (size(PrimitiveLines,2)>1) 
if (length(colors)==1) 

propColor = colors{1};r 
colors=[]; 

for k=l:size(PrimitiveLines,2) 
colors{k} = propColor; 
end 

end 
if (length(thickness)==1) 

thickness = thickness*ones(1,size(PrimitiveLines, 2)); 
end 

end 

for lineSet=l:length(PrimitiveLines) , 
for lineSegIndex=l:size(PrimitiveLines{lineSet} ,2) , 
LimitI=PrimitiveLines{lineSet}(5:6,lineSeglndex)'; 

LimitJ=PrimitiveLines{lineSet}(7:8,lineSeglndex) ' ; 
d=0.25; %1+thickness(lineSet)12; 
patch([LimitJ(l)-d LimitJ(l)+d LimitJ(l)+d LimitJ(l)-d LimitJ(l)-d] 

[Limitl(l)-d Limitl(l)-d Limitl(l)+d Limitl(l)+d LimitI(1)-d]\ 
colors{lineSet}) 

h=line(LimitJ,LimitI); 
set(h,'Color',colors{lineSet}); 
set(h,'LineWidth',thickness(lineSet)) ; 

end 
end 
hold off 

% End of file 'plotwithlines.m' 
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function [TotalLineDescription] = prilines(A, B, CB, sei) 
% 
% Description: Primitive line segments extraction with 
% the use of the Radon Transform. 
% 
%    [B, sei, TotalLineDescription] = prilines(A) 
% 
%   'A' is a MxN matrix representing a gray level image 
% 
%   Each 'B(k)' is an edge images extracted from 'A', for 
%   k in the range [1:length(sei)] 
% 
%    'CB{k}' is a MxN binary image with CB{k}(i,j)=l 
%   where a possible corner was morphologically 
%   extracted from 'A', k in the range [1:length(sei)] 
% 
%   'sei' is a list of indexes to the edge sets extracted 
% 
%   Each column of 'TotalLineDescription' describes a 
%   primitive line extracted from 'A'. 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab S.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'prilines.m' 

%- 

ThetaRange=[0:179] ; 
TotalLineDescription = []; 

% Image segmentation on main edge images 
for k=l:length(sei), 

ContourLineDescription = []; 
CenterXY = floor((size(B{1>)+1)/2); 
CenterRBig=[l+size(B{l},l)-CenterXY(l) CenterXY(2)]  - [0.5 0.5]; 

Rest=B{k}&(~CB{k}); 

Seg=zeros(size(B{k})); 
SegNumber = 0; 

% figure 

while ~(max(max(Rest))==0), 
% imagesc(Rest,[0 1]);colormap(l-gray);axis image;title('Rest'); pause 

TBeginSeg=clock; 
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[Seg, Rest] = segm(Rest,8); 
SegCopy=Seg; 
% imagesc(Seg, [0 1]);colormap(1-gray);axis image;title('Seg Now');pause 

AreaSeg=bwarea(Seg) ,- 

SegNumber = SegNumber+1; 

% crop around the segment, saparing a one-pixel border 
% around it for possible intersection with CB{k}: 

[ISet, JSet] = ind2sub(size(Seg),find(Seg>0)); 
minValI=min(ISet) ; 
minValI=max([minVall-l 1]); 

maxValI=max(ISet); 
maxValI=min([maxVall+l size(A, 1) ]); 

minValJ=min(JSet); 
minValJ=max([minValJ-1 1]) ; 

maxValJ=max(JSet) ,- 
maxValJ=min([maxValJ+1 size(A,2)]); 

auxSeg=Seg|CB{k}; 
transfSeg=auxSeg(minVall:maxVall,minValJ:maxValJ); 

% compute origin of small frame 
CenterXYSmall = floor((size(transfSeg)+1)/2); 
CenterRSmall=[l+size(transfSeg,l)-CenterXY(l) CenterXY(2)]  - [0.5 0.5]; 
CenterRSmalllnBigCoord = CenterRSmall + [minVall-l minValJ-1]; 

CPUT2=cputime; 
[R, Xp]=radon(transfSeg,ThetaRange) ,- 
CPUTl=cputime; 
% disp(['Radon transform time: CPU=' num2str(CPUT1-CPUT2)]) 

[maxRforEachTheta, maxlndex] = max(R); 
[maxR, thetalndex] = max(maxRforEachTheta); 
globalMaxR=maxR; 
displndex=maxlndex(thetalndex); 
% maxR=max(max(R)); 

radonMin = 2*3/4; 

if maxR > radonMin, 
LPDetected=0; 

[mask, CenterR, theta, d, base] = ... 
radsel(size(transfSeg), size(R), thetalndex, displndex); 

bigMask = zeros(size(Seg)); 
bigMask(minValI:maxValI,minValJ:maxValJ)=mask; 

dummyPoint=[0 0] ; 
d = d + sigdistoline(CenterRSmalllnBigCoord,... 

[theta 0 CenterRBig dummyPoint dummyPoint]'); 
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r = bigMask.*double(auxSeg); % B{k); 

C PUT2=cpu t ime; 
[UsedPixels, LineDescription] = xlinesfr, theta, d); 
C PUT1=cpu t ime; 

%disp(['XLINES time: CPU=' num2str(CPUT1-CPUT2)]) ; 
% only include line primitive if not similar to any previously 

detected 
for newL=l:size(LineDescription,2), 

Line=LineDescription(:,newL); 

seenBefore = fuzzyeq(Line,TotalLineDescription); 

% [newL seenBefore] 
if not(seenBefore) 
ContourLineDescription = [ContourLineDescription Line]; 
TotalLineDescription = [TotalLineDescription Line]; 

LPDetected=LPDetected+l; 
SegCopy(UsedPixels{newL})=0; 

end 
end 
if LPDetected>0 

Rest = Rest | SegCopy; 
end 

end % (maxR > radonMin) 

TEndSeg=clock; 
disp(['==> Contour #' int2str(sei(k)) ', LP Extraction #' 

int2str(SegNumber)... 
', ' int2str(LPDetected) ' LP detected, ET=' 

num2str(etime(TEndSeg, TBeginSeg))]); 
% dispC ') 

end % while -(max(max(Rest))==0) 

end % for k=l:length(sei) 

% End of file 'prilines.m' 

127 



function [errorAv, errorMax, errorAvRef] = ... 
quadErrordSeq, JSeq, BaseTheta, sizeA, debugMode) 

% 
% Description: Computes the deviations from ideal shapes for 
% building contours. 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 

I        ■ % 

% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 

I % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

L-_™___.    ! 
% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'guadError.m' 

%- 

errorTotal = 0; 
lengthTotal = 0; 
errorMax = 0; 

global P 

LenAux = zeros(1,length(ISeq)-1); 
errorlnJump = zeros(1,length(ISeq)-1); 
thetaAux = zeros(1,length(ISeq)-1); 

if debugMode 
figure(8) 
image(uint8(255*ones(sizeA))); colormap(gray); axis image 

end 

for k=2:length(ISeq), 
PLAux = PLfromPoints([ISeq(k-l) JSeq(k-l)],... 

[ISeq(k) JSeq(k)], sizeA); 
thetaAux(k-1) = PLAux(1); 
LenAux(k-l) = lengthOfPL(PLAux); 
errorlnJump(k-1) = LenAux(k-l)*abs(sin(2*(mod(thetaAux(k-1) 

- BaseTheta, pi/2)))); 
errorTotal  = errorTotal + errorlnJump(k-1); 
lengthTotal = lengthTotal + LenAux(k-1); 

end 
errorAv = errorTotal / lengthTotal; 

[maxLenAux, whereMax] = max(LenAux); 
thetaRef = thetaAux(whereMax); 

for k=2:length(ISeq), 
errorlnJump(k-1) = LenAux(k-l)*abs(sin(2*(mod(thetaAux(k-1) 

- thetaRef, pi/2)))); 
errorTotal  = errorTotal + errorlnJump(k-1); 
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if debugMode 
h=line(JSeq([k-l k]),ISeq([k-1 k])); 
if whereMax==k-l 
set(h,'color',[1 0 0]); 

set(h,'lineWidth',2); 
end 

title(['e=' num2str(errorInJump(k-1)/LenAux(whereMax)). 
', S=' num2str(abs(sin(2*(mod(thetaAux(k-l)... 
- thetaRef, pi/2)))))]); 

pause 
end 

end 
errorAvRef = errorTotal / lengthTotal; 
errorMax = max(errorInJump/maxLenAux); 

% End of file 'quadError.m' 
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function [r, CenterR, theta, d, base] = radsel(sizeA, sizeR, thetalndex, 
displndex) 
% 
% function [r, CenterR, theta, d, base] = radsel(sizeA, sizeR, thetalndex, 
displndex) 
% 
% 'sizeA' is the size of the original image 
%  . 
% 'sizeR' is the size of the Radon Transform matrix 
% 
% 'thetalndex' is the angular information of the possibly detected PL 
% 
% 'displndex' (displacement index) is the distance to center 
% of the possibly detected PL 
% 
% 'r' is the linear band mask generated at (thetalndex, displndex) 
% 
% 'CenterR' is the computed center of the image, as used by the 
% Radon tranform routine. 
% 
% 'theta'  is the angle associated with the angular index 'thetalndex' 
% 
% 'd'  is the distance in pixels associated with the displacement index 
'thetalndex' 
% 
% 'base' (=[P1 P2]) is the base point of the linear band mask 

% _ ==============% 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

%= 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'radsel.m' 

%- 

NumOfDispl=sizeR(l); %2*ceil(norm(sizeA-floor((sizeA-1)/2)-1))+3; 
Num0fAngles=sizeR(2); 

% compute angle theta 
thetaIncr=pi/NumOfAngles; 
ZeroAngle=ceil((NumOfAngles+1)12); 
if thetaIndex>=ZeroAngle 

theta=(thetalndex-ZeroAngle)*thetalncr; 
else 

theta=-thetalncr*(ZeroAngle-thetalndex); 
end 
cosTheta=cos(theta); 
sinTheta=sin(theta); 
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% compute distance from origin 
ZeroDispl=ceil((NumOfDispl+1)12) ; 
K=NumOfDispl/(2*ceil(norm(sizeA-floor((sizeA-1)/2)-l))+3); 
d=(dispIndex-ZeroDispl)/K; 

r=zeros(sizeA); 

% compute origin 
CenterXY = floor((sizeA+1)/2); 
CenterR=[l+sizeA(l)-CenterXY(l) CenterXY(2)]  - [0.5 0.5]; 

% compute base point, closest point to the origin on the line 
base=CenterR - d*[cosTheta sinTheta]; 

diagLength=sgrt(sizeA*sizeA'); 

for k=-(diagLength/2 + 1):0.2:(diagLength/2 + 1), 
pointNow=round(base + k*[-sinTheta cosTheta] + [0.5 0.5]); 
if (pointNow(l)<=sizeA(l))&(pointNow(2)<=sizeA(2))&(l<=min(pointNow)) 

r(pointNow(l),pointNow(2))=1; 
end 

end 

r=filter2(ones(3,3),r,'same'); 
r(find(r>0))=1; 

%=================================================================% 
% End of file 'radsel.m' 
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function [P, Indexes] = rPartition(S) 
% 
% function [P, Indexes] = rPartition(S) 
% 
% Description: Creates partition 'P' from set of sets 'S', 
% such that: 
% 
% S{i} and S{j} will are included in the same 
% partition P{k} if and only if intersect(S{i},S{j}) 
% is not empty. 
% 
% S{Indexes{k}}, with 1 <= k <= number of proper sets 
% in partition 'P', are the sets of 'S' which merged 
% into P{k}. 

% ^ 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'rPartition.m' 

%  

n=length(S); 

i=l; 
EmptyList=[] ; 

Indexes={}; 

for k=l:n, 
if isempty(S{k}) 

EmptyList=[EmptyList k]; 
Indexes{k} = [] ; 

else 
Indexes{k}=[k]; 

end 
end 

while i < n, 
j = i + 1; 
while j <= n, 

if isempty(intersect(S{i),S{j})) 
j = j + 1; 

else 
S{j}=union(S{i},S{j}); 
Indexes {j }=uni on (Indexes {i} ,Indexes{j}) ,- 
S{i}=[]; 
Indexes{i}=[]; 
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EmptyList=[EmptyList i] ; 
j = n+1; 

end 
end 
i = i +. 1 ; 

end; 

nonEmptyClusters = setdiff([l:n],unique(EmptyList)); 
P=S(nonEmptyClusters); 
Indexes=Indexes(nonEmptyClusters); 

% End of file 'rPartition.m' 
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function [Seg, Rest] = segmClmag, N) 
% 
% Description: Get next segmented region from image 'Imag' 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
%   . % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C Rowe   % 

I % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 

%=================================================================* 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'segm.m' 

%- 

Rest=Imag; 
I=find(Imag > 0) ; 

if length(I)>0 
[R,C]=ind2sub(size(Imag),1(1)); 
[Seg,IDX] = bwselect(Imag,C,R,N) ; 
Rest(IDX)=0; 

else 
Seg=[]; 

end 

% End of file 'segm.m' 
==% 
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function [Building, figHandle] = ... 
selectbuildingcandidates(A, imageBackground, contourOnly,... 
BuildingCandidate, PLinBuild, cycleSummary, shapeError,... 
shapeMaxError, sFrac, numBuildingsInCluster, sizeA, debugMode) 

% 
% Description: Selects building candidate countours acording 
% by thresholding error measurers with non-increasing 
% functions heuristically adjusted. 

% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'selectbuildingcandidates.m' 

if imageBackground 
figHandle = imagesc(double(A)/255, [0 1]); axis image;... 

colormap(gray); plotColor=[0 1 0]; 
else 

figHandle = image(uint8(255*ones(sizeA))); axis image;... 
colormap(gray); plotColor=[0 0 0] ; 

end 

totalNumOfBuildings = 0; 

for k=l:length(numBuildingsInCluster), 

for m=l:numBuildingsInCluster(k), 

if -isempty(BuildingCandidate{k,m}) 
ISeq = BuildingCandidate{k,m}(:,1); 
JSeq = BuildingCandidate{k,m}(:,2); 

if debugMode 
h=line(JSeq,ISeq); 
set(h,'LineWidth',2) 
set(h,'Color',[0 1 0]) 
title(['Cluster=' int2str(k) '  #PL='... 

int2str(length(PLinBuild{k,m})) '  Build=' int2str(m) 
'  shErr=' num2str(shapeError{k,m})... 
'  shMax=' mjm2str(shapeMaxError{k,m})... 
'  sFrac=' num2str(sFrac{k,m})]) 

% pause , 
end 

LB = length(PLinBuild{k,m}); 
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% monotonic threshold function application 
if  ({(LB <= 3)&(sFrac{k,m}>=0.75)&... 

(shapeError{k,m} <= 0.5)&... 
(shapeMaxError{k,m} <= 0.9)) j-.. 

((LB == 4)&(sFrac{k,m}>=0.75)&... 
(shapeError{k,m} <= 0.5)&... 
(shapeMaxError{k,m} <= 0.70)) |... 

((LB >= 5)&(LB <= 9)&... 
(sFrac{k,m}>=0.85)&... 
(shapeError{k,m} <= 0.30)&... 
(shapeMaxError{k,m} <= 0.35)) |... 

((LB >= 10)&(sFrac{k,m}>=0.85)&... 
(shapeError{k,m} <=■ 0 .30)&. . . 
(shapeMaxError{k,m> <= 0.2))) 

if contourOnly & imageBackground 
h=line(JSeq,ISeg); 
set(h,'LineWidth',2) 
set(h,'Color', plotColor) 

else 

h=patch(JSeq, ISeq, plotColor) ,- 
end 

totalNxomOfBuildings = totalNumOfBuildings + 1; 
Building.PL{totalNumOfBuildings} = PLinBuild{k,m}; 
Building.Cycle{totalNumOfBuildings} = cycleSummary{k,m}, 
Building.OwnerCluster(totalNumOfBuildings)=k; 
Building.Contour{totalNumOfBuildings}.ISeg = ISeq'; 
Building.Contour{totalNumOfBuildings}.JSeq = JSeq'; 

else 
if debugMode 

h=line(JSeq,ISeq); 
set(h,'LineWidth',1) 
set(h,'Color', [0 0 1]) 
end 

end 
end 

end 
end 

titlet[int2str(totalNumOfBuildings) ' building candidates found.']) 

% End of file 'selectbuildingcandidates.m' 
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function [PLinLoop, Indexes] = ... 
seploops(A, PLinLoopOrig, PL, clusterFirst, debugMode) 

% 
% 
% PLinLoop{k} = PLinLoopOrig{j}, for some j. 
% 
% Description: 
% 
% 'seploops' extracts cycles from the set PLinLoopOrig that don't 
% contain other cycles in the same set PLinLoopOrig, thus eliminating 
% some spuriuous cycle detections. Indexes{k} is the index in 
% PLinLoopOrig{} of the k-th non-spurious cycle found. 
% 
% (arguments 'A' and 'PL' are only used for visualization plots) 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'seploops.m' 

% % 

if clusterFirst 
% then merge those which intersect 
[PLinLoopMerged, Mergedlndexes] = rPartition(PLinLoopOrig) ,■ 
PLinLoop = {} ; 
Indexes = [ ] ; 
T = 0; 
for k=l:length(PLinLoopMerged), 

ClusteredCycles = PLinLoopOrig(Mergedlndexes{k}); 
[P, Ind] = fPartition(ClusteredCycles); 
for j=l:length(Ind), 

T = T+l; 
PLinLoop{T}=P{j}; %=LoopCluster{Ind(T)}; 
Indexes{T}=MergedIndexes{k}(Ind(j)); 

end 
end 

else 
PLinLoop = PLinLoopOrig; 
Indexes = []; 

end 

if debugMode 
T=0; 
for k=l:length(PLinLoop), 
if -isempty(PLinLoop{k}) 

T=T+1; 
plotwithlines(uint8(255*ones(size(A))),... 
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{PL(:,PLinLoop{k})},[2   ],{[0   1   0]}) 
if  T   >   1 

axis(v) 
end 

grid on 
if clusterFirst 

title([int2str(T) ': ' int2str(length(Indexes{T}) 
' overlapping loops']) 

else 
title([int2str(T) ': [' int2str(PLinLoop{k})... 

'] formant PL']) 
end 

pause 
v = axis; 

end 
end 

end 

% End of file 'seploops.m' 
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function [h, Proj]=sigdistoline(P,Line) 
% 
% Description: 
% 
% Computes the distance from point 'P' to a given line. 
% 
% 'Line' is a primitive line in the format: 
% [theta, d, base, LimitI, LimitJ] 

%=================================================================% 
% % 
% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'sigdistoline.m' 

%- 

theta=Line(1); 
d=Line(2); 
base=Line(3:4); 
Center = base(:)' + d*[cos(theta) sin(theta)]; 

Disp=P(:)'-Center; 
Y=-Disp(l); 
X=Disp(2); 
YSinXCos=Y*sin(theta) + X*cos(theta); 
XProj=cos(theta)*YSinXCos - d*sin(theta); 
YProj=sin(theta)*YSinXCos + d*cos(theta); 
Proj =Center+[-YProj XProj]; 

h=sign(Proj(1) - P(l))*norm(Proj-P(:)'); 

%============================================== 
% End of file 'sigdistoline.m' 
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function [loop, PLinLoop, h] = smartFindCycles(6, A, PL, IJCoordinates, 
debugFlag) 
% 
% Description: Find cycles in the graph G and computes 
% polygons associated with each of them. 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% ■ % 

% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
% % 
%=================================================================% 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 
% This file named:    'smartFindCycles.m' 

sPL = []; 

loop={}; 
PLinLoop = {}; 

n = size(PL,2); 

searchSet = [l:2:2*n]; 

while -isempty(searchSet), 
otherVerticeOfPL = find(G(searchSet(1),:)==1); 
InitialPath = [otherVerticeOfPL searchSet(1)]; 

k = floor((searchSet(l)-l)/2)+l; 

[loop{k}, h] = loopfromPL(InitialPath, 7, IJCoordinates); 
PLinLoop{k} = unique(floor((loop{k}-l)/2)+1); 

if length(PLinLoop{k}) < 3 
PLinLoop{k} = [],- 

end 

searchSet = searchSet(2:length(searchSet)); 

if -isempty(PLinLoop{k}) 
searchSet = ... 

setdiff (searchSet, setdif f (loop{k} , OtherVerticeOfPL) ) ,- 
disp(['Searching for cycles: ' . . . 

num2str(round(1000*length(searchSet)/n)/10) '% done.']) 

if debugFlag 
PLinLoop{k} 
sPL = [sPL PL(:,PLinLoop{k})]; 

plotwithlines(A, {PL(:,PLinLoop{k}) PL(:,k)},... 
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[2 2], {[0 1 0][1 0 0]}) 
vl=axis; 
title(['loop: [' int2str(loop{k}) '] g='... 

int2str((InitialPath(l)>InitialPath(2)}+l)]) 
xlabel(['  h=' int2str(h)]); 

pause 

v=axis; 
if sum(v==vl)~=length(v) 

for m=3:length(loop{k}), 
plnow = floor((loop{k}(m)-l)/2)+l; 
plotwithlines(A, {PL(:,PLinLoop{k}) PL(:,plnow)},... 

[2 2], {[0 1 0].[1 0 0]}) 
titlet['loop: [' int2str(loop{k}) '] g='... 

int2str((InitialPath(l)>InitialPath(2))+l)]) 
othernodenow = find(G(loop{k}(m),:)==1); 

xlabeK['Node=' int2str(loop{k)(m))... 
'  Jumped with G='... 
int2str(double(G(loop{k}(m-1),othernodenow)) ) ] ) ; 

axis(v) 
pause 

end 
end 

end 
end 

end 

if debugFlag 
plotwithlines(A, {sPL}, 2, {[010]}) 

end 

% End of file 'smartFindCycles .m' 
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function [UsedPixels, LineDescription] = xlines(r, theta, disp) 
% 
%     [UsedPixels,   LineDescription]   = xlines(r,   theta,   disp) 
% 
% r binary image 
% 
% Description: Computes the best line passing through the on-pixels 
% of each segmented region in r. 

% ^ 

% COMPUTER-AIDED RECOGNITION OF % 
% MAN-MADE STRUCTURES IN AERIAL PHOTOGRAPHS % 
% % 
% Luiz Alberto Cardoso, under supervision of Prof. Neil C. Rowe  % 
% % 
% Department of Computer Science % 
% Naval Postgraduate School, September 1999 % 
%  % 

% Programing Language: Matlab 5.3 
% Operational System:  Windows NT 4.0 
% 

% This file named:    'xlines.m' 

% % 

Rest=r; 
Seg=zeros(size(r)); 
s=0; 
LineDescription = [ ] ; 
UsedPixels=[]; 

% compute origin 
CenterXY = floor((size(r)+1)/2); 
CenterR=[l+size(r,l)-CenterXY(l) CenterXY(2)]  - [0.5 0.5]; 

% compute base point, closest point to the origin on the line 
base=CenterR - disp*[cos(theta) sin(theta)]; 
while -(max(max(Rest))==0), 

[Seg, Rest] = segm(Rest,8); 

% test if Seg is plausible line segment 
if lineseg(Seg) 

% if it is: (1) increment s, B{s} <— Seg 
% (2) annotate parameters 

lineParms = bestline(Seg, CenterR); %, bigMask, auxSeg); 
angleOfThisSeg=lineParms(1); 
if (abs(cos(angleOfThisSeg-theta)) > cos(pi/5)) 

LineDescription = [LineDescription lineParms]; 
s=s+l; 
UsedPixels{s} = find{bwmorph(Seg,'spur',2)>0); 

end 
end 

end 

% End of file 'xlines.m' 
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